
CI/CD Automation for Simulink® Check™
Support Package
Reference Book

R2022b — R2024a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

CI/CD Automation for Simulink® Check™ Reference Book PDF
© COPYRIGHT 2022-2024 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
August 2022 PDF Only Version 22.1.0 (R2022a)
September 2022 PDF Only Version 22.1.1
October 2022 PDF Only Versions 22.1.2 and 22.2.2 (R2022b)
November 2022 PDF Only Versions 22.1.3 and 22.2.3
December 2022 PDF Only Versions 22.1.4 and 22.2.4
February 2023 PDF Only Versions 22.1.5 and 22.2.5
March 2023 PDF Only Version 23.1.5 (R2023a)
April 2023 PDF Only Versions 22.1.6, 22.2.6, and 23.1.6
June 2023 PDF Only Versions 22.1.7, 22.2.7, and 23.1.7
July 2023 PDF Only Versions 22.1.8, 22.2.8, and 23.1.8
August 2023 PDF Only
September 2023 PDF Only
October 2023 PDF Only
November 2023 PDF Only
December 2023 PDF Only
February 2024 PDF Only
March 2024 PDF Only
April 2024 PDF Only

Versions 22.2.9, 23.1.9, and 23.2.0 (R2023b)
Versions 22.1.9, 22.2.10, and 23.1.10
Versions 22.1.10, 22.2.11, 23.1.11, and 23.2.1
Versions 22.1.11, 22.2.12, 23.1.12, and 23.2.2
Versions 22.1.12, 22.2.13, 23.1.13, and 23.2.3
Versions 22.1.13
Versions 22.2.14, 23.1.14, and 23.2.4
Version 24.1.1 (R2024a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

iii

Contents

Reference Book
1

Process Modeling System API
2

Build System API
3

Pipeline Generator API
4

Report Generator API
5

Utilities
6

Process Advisor Example Projects
7

Artifact Types
8

Tokens
9

iv Contents

Built-In Task Library
10

Check Coding Standards or Prove Code Quality . 10-3
Prerequisites . 10-3
Add Task to Process . 10-4
Reconfigure Task . 10-4
Source Code . 10-10

Check Modeling Standards . 10-11
Add Task to Process . 10-11
Reconfigure Task . 10-11
Source Code . 10-16

Detect Design Errors . 10-17
Add Task to Process . 10-17
Reconfigure Task . 10-17
Source Code . 10-19

Generate Code . 10-20
Add Task to Process . 10-20
Reconfigure Task . 10-20
Source Code . 10-22

Generate Model Comparison . 10-23
Prerequisites . 10-23
Add Task to Process . 10-23
Reconfigure Task . 10-23
Launch Tool Action . 10-24
Source Code . 10-25

Generate SDD Report . 10-26
Prerequisites . 10-26
Add Task to Process . 10-26
Reconfigure Task . 10-26
Source Code . 10-28

Generate Simulink Web View . 10-30
Prerequisites . 10-30
Add Task to Process . 10-30
Reconfigure Task . 10-30
Source Code . 10-32

Inspect Code . 10-33
Add Task to Process . 10-33
Reconfigure Task . 10-33
Source Code . 10-34

Merge Test Results . 10-35
Prerequisites . 10-35
Add Task to Process . 10-35
Reconfigure Task . 10-35
Source Code . 10-39

v

Run Tests (per model) . 10-40
Add Task to Process . 10-40
Reconfigure Task . 10-40
Source Code . 10-43

Run Tests (per test case) . 10-44
Add Task to Process . 10-44
Reconfigure Task . 10-44
Source Code . 10-45

Built-In Query Library
11

padv.builtin.query.FindArtifacts . 11-3
Syntax . 11-3
Input Arguments . 11-3
Methods . 11-4
Use in Process Model . 11-4
Test Outside Process Model . 11-4

padv.builtin.query.FindCodeForModel . 11-6
Syntax . 11-6
Input Arguments . 11-6
Methods . 11-6
Use in Process Model . 11-6

padv.builtin.query.FindExternalCodeCache . 11-9
Syntax . 11-9
Input Arguments . 11-9
Methods . 11-9
Use in Task Definition . 11-9
Test Query from Command Window . 11-10

padv.builtin.query.FindFilesWithLabel . 11-11
Syntax . 11-11
Input Arguments . 11-11
Methods . 11-12
Use in Process Model . 11-12

padv.builtin.query.FindFileWithAddress . 11-13
Syntax . 11-13
Input Arguments . 11-13
Methods . 11-14
Use in Process Model . 11-14
Test Outside Process Model . 11-15

padv.builtin.query.FindMAJustificationFileForModel 11-16
Syntax . 11-16
Input Arguments . 11-16
Use in Process Model . 11-16

vi Contents

padv.builtin.query.FindModels . 11-18
Syntax . 11-18
Input Arguments . 11-18
Methods . 11-19
Use in Process Model . 11-19
Test Outside Process Model . 11-20

padv.builtin.query.FindModelsWithLabel . 11-21
Syntax . 11-21
Input Arguments . 11-21
Methods . 11-22
Use in Process Model . 11-22

padv.builtin.query.FindModelsWithTestCases . 11-23
Syntax . 11-23
Input Arguments . 11-23
Methods . 11-23
Use in Process Model . 11-24

padv.builtin.query.FindProjectFile . 11-25
Syntax . 11-25
Methods . 11-25
Use in Process Model . 11-25

padv.builtin.query.FindRefModels . 11-26
Syntax . 11-26
Input Arguments . 11-23
Methods . 11-26
Use in Process Model . 11-27

padv.builtin.query.FindRequirements . 11-28
Syntax . 11-28
Input Arguments . 11-28
Methods . 11-29
Use in Process Model . 11-29

padv.builtin.query.FindRequirementsForModel 11-30
Syntax . 11-30
Input Arguments . 11-30
Methods . 11-31

padv.builtin.query.FindTestCasesForModel . 11-32
Syntax . 11-32
Input Arguments . 11-32
Methods . 11-33
Use in Process Model . 11-33

padv.builtin.query.FindTopModels . 11-34
Syntax . 11-34
Input Arguments . 11-23
Methods . 11-34
Use in Process Model . 11-35

padv.builtin.query.GetDependentArtifacts . 11-36
Syntax . 11-36

vii

Methods . 11-36
Use in Task . 11-36

padv.builtin.query.GetIterationArtifact . 11-38
Syntax . 11-38
Methods . 11-38
Use in Task . 11-38

padv.builtin.query.GetOutputsOfDependentTask 11-40
Syntax . 11-40
Input Arguments . 11-40
Methods . 11-40
Use in Task . 11-40

viii Contents

Reference Book

This PDF is a Reference Book with information on the API, artifact types, built-in tasks, and built-in
queries.

For examples and general information, see the User's Guide PDF. You can access the PDFs from
either:

• https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-
check

• The question mark icon in the Process Advisor app

1

https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check
https://www.mathworks.com/matlabcentral/fileexchange/115220-ci-cd-automation-for-simulink-check

Process Modeling System API

The support package provides a customizable process modeling system that you can use to define
your build and verification process. You define your pipeline of tasks in the process model. The
process model is a file (processmodel.p or processmodel.m) that specifies the tasks in the
process, the queries that determine which artifacts to use for each task, the artifacts associated with
each task, and the dependencies between tasks. Open the Process Advisor app or use the function
createprocess to create a process model for your project. Inside the process model file, you can
add, remove, and reconfigure tasks and the dependencies between tasks.

For examples of how to create a process model, see the "Author Your Process Model" chapter in the
User's Guide PDF.

Classes

Class Description
padv.Artifact Store artifact information
padv.ProcessModel Define tasks and process for project
padv.Query Select set of artifacts from project
padv.Subprocess Group tasks
padv.Task Define single step in process
padv.TaskResult Create and access results from task

Functions

Create and Access Process Model

Function Description
createprocess Create a process model
getprocess Get process model object for process model in

project

2

createprocess
Create process model

Syntax
processModelPath = createprocess()
processModelPath = createprocess(Name=Value)

Description
processModelPath = createprocess() creates a process model at the project root and returns
the path to the created process model. The process model is saved as processmodel.m.

By default, the process model is a default process model that can create a model-based design
pipeline. You can only call createprocess if you have a project open.

processModelPath = createprocess(Name=Value) specifies the output process model using
one or more Name=Value arguments.

Examples

Create Process Model

Open a project that does not have a process model and use createprocess to create a copy of the
default process into the project.

Open an example project, for example matlab.project.example.timesTable, that does not have
a process model.

Create a process model for the project.

processModelPath = createprocess

createprocess copies the default process model into the project root and saves the path to the
process model to processModelPath.

Create a project object for the currently loaded project.

myProject = currentProject;

Add the process model file to the current project.

addFile(myProject,processModelPath)

Open the Process Advisor app in a standalone window to view the tasks associated with the project
and project artifacts.

processAdvisorWindow

2 Process Modeling System API

2-2

Overwrite Process Model with Empty Process

Open a project and overwrite the process model with an empty process model.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Use createprocess to overwrite the existing process model with an empty process model.

processModelPath = createprocess(Template="empty",Overwrite=true)

Open the created process model to view the commented-out example code.

open(processModelPath)

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: processModelPath = createprocess(Overwrite=true)

Template — Name of predefined process model template
"default" (default) | "empty" | "parallel"

Name of predefined process model template, specified as either:

• "default" — Process model file that includes several built-in tasks
• "empty" — Process model file that contains commented-out example code for adding built-in and

custom tasks
• "parallel" — Process model file designed for parallel CI jobs. For information, see "Parallel

Pipeline Architectures".

Example: "empty"
Data Types: char | string

Overwrite — Setting to overwrite existing process model
false or 0 (default) | true or 1

Setting to overwrite existing process model, specified as a numeric or logical 0 (false) or 1 (true).
Example: true
Data Types: logical

Output Arguments
processModelPath — Path to created process model
character vector

Path to created process model, returned as a character vector.

 createprocess

2-3

By default, createprocess creates a process model at the project root.

Alternative Functionality
App

If a project does not have a process model, you can use the Process Advisor app to create the default
process model. To open the Process Advisor app for a project, in the MATLAB® Command Window,
enter:

processAdvisorWindow

When you open the Process Advisor app on a project that does not have a process model, the app
automatically creates a copy of the default process model at the root of the project.

2 Process Modeling System API

2-4

getprocess
Get process model object for process model in project

Syntax
processModelObject = getprocess()

Description
processModelObject = getprocess() returns a process model object, processModelObject,
for the process model in the project. You can use the process model object to view the properties of
the process model in the project. For more information, see the documentation for
"padv.ProcessModel" in this PDF.

If the current project does not have a process model, the function getprocess automatically creates
a new process model at the root of the project.

Examples

Find the Default Query for the Current Process

Use getprocess to find the default query that the current process model uses. If you have a task
that does not specify an iteration query, the default query defines which artifacts the process iterates
over. By default, custom tasks run once per project because the default query is
"padv.builtin.query.FindProjectFile".

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Get the properties of the current process model.

currentProcessModel = getprocess()

Get the default query for the current process model.

defaultQuery = currentProcessModel.DefaultQueryName

defaultQuery =

 "padv.builtin.query.FindProjectFile"

You can use the findTask and findQuery functions on the loaded process model to find specific
tasks and queries in the process.

 getprocess

2-5

findTask(currentProcessModel,"padv.builtin.task.RunModelStandards")

Output Arguments
processModelObject — Properties of process model
padv.ProcessModel object

Properties of process model, returned as a padv.ProcessModel object.

The padv.ProcessModel object returns the names of the tasks, queries, default query, and root
process model file for the process.

2 Process Modeling System API

2-6

padv.Artifact
Store artifact information

Description
A padv.Artifact object represents an artifact that you can run a task on in the process defined in
your process model. For example, you can use a padv.Artifact object as the input to functions like
runprocess and generateProcessTasks when you only want to run or generate tasks associated
with a specific artifact.

Creation

Syntax
artifactObject = padv.Artifact(artifactType,artifactAddress)
artifactObject = padv.Artifact(___ ,Name=Value)

Description

artifactObject = padv.Artifact(artifactType,artifactAddress) stores artifact
information in a padv.Artifact object, artifactObject. You can use the artifact information
when you want to get the ID for a specific task iteration.

artifactObject = padv.Artifact(___ ,Name=Value) specifies the artifact using one or more
Name=Value arguments.

Input Arguments

artifactType — Type of artifact
string

Type of artifact, specified as a string. For example:

• "sl_model_file" for Simulink® models
• "m_file" for MATLAB M files

For a list of valid artifact types, see the chapter "Artifact Types" in this PDF.
Example: "sl_model_file"
Example: "m_file"
Example: "sl_test_case"
Data Types: string

artifactAddress — Address of artifact
padv.util.ArtifactAddress object

 padv.Artifact

2-7

Address of artifact, specified as an padv.util.ArtifactAddress object. Note that the address is
relative to the project root.
Example:
padv.util.ArtifactAddress(fullfile("02_Models","AHRS_Voter","specification","
AHRS_Voter.slx"))

Data Types: string

Properties
Alias — Human-readable name for artifact
empty string (default) | string

Human-readable name for the artifact in the Process Advisor user interface, specified as a string.

If you want to customize how artifact names appear in Process Advisor, create a custom query that
updates the values of the Alias property for each padv.Artifact object that the query returns.
For an example of how to update the alias to remove the .slx file extension for models shown in the
Tasks column, see "Hide File Extension in Process Advisor".

Data Types: string

Type — Type of artifact
string

Type of artifact, specified as a string. For example:

• "sl_model_file" for Simulink models
• "m_file" for MATLAB M files

For a list of valid artifact types, see the chapter "Artifact Types" in this PDF.
Example: "sl_model_file"
Example: "sl_test_case"
Example: "m_file"
Data Types: string

Parent — Reference to parent artifact
padv.Artifact object

Reference to parent artifact, specified as a padv.Artifact object.

2 Process Modeling System API

2-8

ArtifactAddress — Address of artifact in project
padv.util.ArtifactAddress object

Address of artifact in project, specified as a padv.util.ArtifactAddress object.

Object Functions
Object Function Description
getTypes Get artifact type.

TYPES = getTypes(artifactObj)

getKey Get unique key for artifact. A key is a unique
address for a file.

KEY = getKey(artifactObj)

hasType Check if artifact has type.

TYPE = hasType(artifactObj)

Examples

Run Task Associated with Model

Suppose you have a process model with several tasks, but right now you only want to run test cases
associated with a single model. You can use a padv.Artifact object to specify the model and use
the runprocess function to run the test cases for that model.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

The example process contains a Run Tests task (padv.builtin.task.RunTestsPerTestCase)
that runs the test cases in the project.

Create a padv.Artifact object that represents the model that you want to run. For this example,
the artifact type is "sl_model_file" because the artifact is a Simulink model and the address is the
path to model AHRS_Voter.slx, relative to the project root.

model = padv.Artifact(...
"sl_model_file",...
fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx"));

Run the Run Tests task on the test cases associated with the model AHRS_Voter.slx by specifying
the name-value arguments of the runprocess function.

runprocess(...
Tasks = "padv.builtin.task.RunTestsPerTestCase",...
FilterArtifact = model)

The build system only runs the test cases associated with the specified model.

 padv.Artifact

2-9

padv.ProcessModel
Define tasks and process for project

Description
A padv.ProcessModel object represents the process model that defines the tasks and process for a
project. A task performs an action and is a single step in your process. A process is a series of tasks
that run in a specific order. The process model defines the tasks that you can perform on the project,
and the order and relationships between tasks in the process. You can use tasks and queries to
dynamically perform actions and find artifacts in the project. Use the addTask object function to add
tasks to the process model. You can use the function runprocess to run the tasks defined in the
process model. Certain padv.ProcessModel properties use tokens, like $PROJECTROOT$, as
placeholders for dynamic path resolution during run-time. For information on the tokens, see the
"Tokens" section in this PDF.

Creation

Syntax
pm = padv.ProcessModel()

Description

pm = padv.ProcessModel() creates an empty process model object, pm.

Properties
TaskNames — Tasks added to process model object
string array

Tasks added to process model object, returned as string array.

Use the object function addTask to add a task instance to a process model.
Example: ["padv.builtin.task.GenerateSimulinkWebView"
"padv.builtin.task.RunModelStandards"]

Data Types: string

QueryNames — Queries added to process model object
string array

Queries added to process model object, returned as string array.

Use the object function addQuery to add a query instance to a process model.
Example: ["padv.builtin.query.FindModels" "padv.builtin.query.FindProjectFile"]
Data Types: string

2 Process Modeling System API

2-10

DefaultQueryName — Default query for tasks added to process model object
"padv.builtin.query.FindProjectFile" (default) | name of padv.Query query

Default query for tasks added to process model, specified as the name of a padv.Query query.
Example: "padv.builtin.query.FindModels"
Data Types: string

DefaultQueryName — Name of default project query
"padv.builtin.query.FindProjectFile" (default) | task name or instance

Name of default project query, specified as a task name or padv.Task instance.
Example: "padv.builtin.query.FindModels"

DefaultOutputDirectory — Default output directory for results
fullfile("$PROJECTROOT$","PA_Results") (default) | string array

Default output directory, specified as a string array. Set the default output directory to a path inside
your project. The path can be either a relative or absolute path. Consider using the path relative to
the project root to promote consistency across local environments and CI systems, and allow for more
portable builds.

By default, Process Advisor and the build system output results in a folder PA_Results in the project
root.
Example: fullfile("$PROJECTROOT$","Process_Results")
Data Types: string

DefaultRootFileName — Default name of process model file
"processmodel.m" (default) | string

Default name of process model file, specified as a string.
Data Types: string

JUnitReportName — Name of generated JUnit-style XML report
"$TASKNAME$_$ITERATIONARTIFACT$_JUnit.xml" (default) | string array

Name of generated JUnit-style XML report , specified as a string array.

By default, the generated JUnit report for a task has the format
taskName_iterationArtifact_JUnit.xml.
Example: "$TASKNAME$_$ITERATIONARTIFACT$_JUnitReport.xml"
Data Types: string

JUnitReportPath — Location for JUnit-style XML report
fullfile("$DEFAULTOUTPUTDIR$","junit") (default) | string array

Location for JUnit-style XML report, specified as a string array.
Example: fullfile("$DEFAULTOUTPUTDIR$","junit","reports")
Data Types: string

 padv.ProcessModel

2-11

RootFileName — Name of process model file
string

Name of process model file, returned as a string.

RootFileName uses processmodel.m as the name of the process model file, unless a
processmodel.p file exists. If you have both a P-code file and a .m file, the P-code file takes
precedence over the corresponding .m file for execution, even after modifications to the .m file.

The default name of the process model file is specified by DefaultRootFileName.
Data Types: string

Object Functions
reset Removes tasks and queries from process model

pm = padv.ProcessModel();
reset(pm);

reload Load process model by executing process model
file for project

pm = padv.ProcessModel();
reload(pm);

addSubprocess Add subprocess instance to process model

addSubprocess(pm,"MySubprocess");

addTask Add task instance to process model

addTask(pm,"MyCustomTask",Action=@SayHello,...
IterationQuery=padv.builtin.query.FindModels);

For information, see "addTask".
addQuery Add query instance to process model

addQuery(pm,"MyCustomQuery")

For information, see "addQuery".
findQuery Find query instance by name

pm = padv.ProcessModel();
QUERY = findQuery(pm,...
"padv.builtin.query.FindModels")

findTask Find task instance by name

pm = padv.ProcessModel();
TASK = findTask(pm,...
"padv.builtin.task.RunModelStandards");

exists Check if process model exists for project

[FOUND, PATH] = padv.ProcessModel.exists()

Examples

2 Process Modeling System API

2-12

Add Tasks to Process Model Object

You can use the object function addTask to add the tasks to a padv.ProcessModel object.

Open the Process Advisor example project.

processAdvisorExampleStart

The model AHRS_Voter opens with the Process Advisor pane to the left of the Simulink canvas.

In the Process Advisor pane, click the Edit process model button to open the processmodel.m
file for the project.

Replace the contents of the processmodel.m file with this code:

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 addTask(pm,"taskA");
 addTask(pm,"taskB");

end

The function addTask adds the task objects to the padv.ProcessModel object.

Use the function getprocess to get the process model object for the project.

pm = getprocess;

Get the task object for "taskA" defined in the current process model.

taskAObj = findTask(pm, "taskA");

taskAObj is a padv.Task object that you can use to view the properties of the task "taskA".

 padv.ProcessModel

2-13

addQuery
Namespace: padv

Add query instance to process model

Syntax
queryObj = addQuery(pm,queryNameOrInstance)
queryObj = addQuery(___ ,Name=Value)

Description
queryObj = addQuery(pm,queryNameOrInstance) adds the query specified by
queryNameOrInstance to the process model. You can access the query using the query object
queryObj.

queryObj = addQuery(___ ,Name=Value) specifies the properties of the query using one or
more Name=Value arguments.

Input Arguments
pm — Process for project
padv.ProcessModel object (default) |

Process for project, specified as a padv.ProcessModel object.
Example: pm = padv.ProcessModel

queryNameOrInstance — Name or instance of query
string | padv.Query object

Name or instance of a query, specified as a string or padv.Query object.
Example: "NameOfMyQuery"
Example: padv.builtin.query.FindModels

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:

DefaultArtifactType — Artifact type returned by query
"padv_output_file" (default) | valid value for the Type property of a padv.Artifact object

Artifact type returned by the query, specified as a valid value for the Type property of a
padv.Artifact object.
Example: DefaultArtifactType = "sl_model_file"

2 Process Modeling System API

2-14

Title — Human readable name
Name property of query (default) | string

Human readable name for the query, specified as a string. By default, the Title property of the
query is the same as the Name.
Example: Title = "My Query"
Data Types: string

FunctionHandle — Handle to function that runs when you run query object
function_handle

Handle to function that runs when you run query object, specified as a function_handle.

When you call the run function on a query object, run runs the function specified by the
function_handle.
Example: FunctionHandle = @FunctionForQuery
Data Types: function_handle

Parent — Initial query run before iteration query
[0×0 string] (default) | padv.Query object | Name of padv.Query object

Initial query run before iteration query, specified as either a padv.Query object or the Name of a
padv.Query object. When you specify a padv.Query object as the iteration query for a task, the
Parent query is the initial query that the build system runs before running the specified iteration
query.

For example, the built-in querypadv.builtin.query.FindModelsWithTestCases has the
Parent query padv.builtin.query.FindModels. If you specify
padv.builtin.query.FindModelsWithTestCases as the iteration query for a task, you are
specifying that you want the task to run once for each model with a test case. The build system runs
the Parent query padv.builtin.query.FindModels first, to find the models in the project, and
then the build system runs the iteration query padv.builtin.query.FindModelsWithTestCases
to find the models with test cases.

The build system ignores the Parent query when you specify a query as an input query or
dependency query for a task.
Example: Parent = "padv.builtin.query.FindModels"

SortArtifacts — Setting for automatically sorting artifacts by address
true or 1 (default) | false or 0

Setting for automatically sorting artifacts by address, specified as a numeric or logical 1 (true) or 0
(false). When a query returns artifacts, the artifacts should be in a consistent order. By default, the
build system sorts artifacts by the artifact address.

Alternatively, you can sort artifacts in a different order by overriding the internal sortArtifacts
method in a subclass that defines a custom sort behavior. For an example, see "Sort Artifacts in
Specific Order" in the User's Guide PDF.

The build system automatically calls the sortArtifacts method when using the process model. The
sortArtifacts method expects two input arguments: a padv.Query object and a list of

 addQuery

2-15

padv.Artifact objects returned by the run function. The sortArtifacts method should return a
list of sorted padv.Artifact objects.
Example: SortArtifacts = false
Data Types: logical

Output Arguments
queryObj — Query object
padv.Query object

Query object, returned as a padv.Query object.

For more information, see the documentation for "padv.Query" in this PDF.

2 Process Modeling System API

2-16

addTask
Namespace: padv

Add task instance to process model

Syntax
taskObj = addTask(pm,taskNameOrInstance)
taskObj = addTask(___ ,Name=Value)

Description
taskObj = addTask(pm,taskNameOrInstance) adds the task specified by
taskNameOrInstance to the process model. You can access the task using the task object taskObj.

taskObj = addTask(___ ,Name=Value) specifies the properties of the task using one or more
Name=Value arguments.

Examples

Add Tasks to Process Model

You can use the addTask function to create function-based tasks directly in the process model.

Open the Process Advisor example project.

processAdvisorExampleStart

The model AHRS_Voter opens with the Process Advisor pane to the left of the Simulink canvas.

In the Process Advisor pane, click the Edit process model button to open the processmodel.m
file for the project.

Replace the contents of the processmodel.m file with this code:

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 addTask(pm,"MyCustomTask",Action=@SayHello,...
 IterationQuery=padv.builtin.query.FindModels);

end

function results = SayHello(~)
 disp("Hello, World!");
 results = padv.TaskResult;
 results.ResultValues.Pass = 1;
end

 addTask

2-17

This code adds a task, MyCustomTask to the process model while specifying that the task runs the
function SayHello one time for each model found in the project. The function SayHello also
specifies the results returned by the task.

Input Arguments
pm — Process for project
padv.ProcessModel object (default)

Process for project, specified as a padv.ProcessModel object.
Example: pm = padv.ProcessModel

taskNameOrInstance — Name or instance of task
string | padv.Task object

Name or instance of a task, specified as a string or padv.Task object.
Example: "NameOfMyTask"
Example: padv.builtin.task.RunModelStandards

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
addTask(pm,"RunOnceForEachModel",IterationQuery=padv.builtin.query.FindModels
)

Title — Human readable name that appears in Process Advisor app
Name property of task (default) | string

Human readable name that appears in the Tasks column of the Process Advisor app, specified as a
string. By default, the Process Advisor app uses the Name property of the task as the Title.
Example: "My Task"
Data Types: string

IterationQuery — Artifacts that task iterates over
padv.Query object | name of padv.Query object

Artifacts that task iterates over, specified as a padv.Query object or the name of a padv.Query
object. By default, task objects run one time and are associated with the project. When you specify
IterationQuery, the task runs one time for each artifact specified by the padv.Query. In the
Process Advisor app, the artifacts specified by IterationQuery appear under task title.

For example, if the IterationQuery for a task finds three models, Model_A, Model_B, and
Model_C, the build system creates three task iterations under the title of the task in the Tasks
column.

2 Process Modeling System API

2-18

Each of the artifacts under the task title represents a task iteration.

For an example of the effect of different IterationQuery values:

• If you have a task where the IterationQuery uses padv.builtin.query.FindModels to find
each of the models in the project, the build system creates a task iteration for each model.

• If you have a task where the IterationQuery uses padv.builtin.query.FindProjectFile
to find the project file, the build system creates a task iteration for the project file.

• If you have a task where the IterationQuery uses padv.builtin.query.FindTopModels to
find top models in the project, the build system creates a task iteration for each top model.

Example: IterationQuery = padv.builtin.query.FindModels
Data Types: string

InputQueries — Inputs to task
padv.Query object | name of padv.Query object | array of padv.Query objects

Inputs to the task, specified as:

• a padv.Query object
• the name of padv.Query object
• an array of padv.Query objects
• an array of names of padv.Query objects

 addTask

2-19

By default, the task does not specify any artifacts as inputs. When you specify InputQueries, the
task tasks the artifacts specified by the specified query or queries as an input.

Suppose a task runs once for each model in the project and you want to provide the models as inputs
to the task. If you specify InputQueries as the built-in query
padv.builtin.query.GetIterationArtifact, the query returns each artifact that the tasks
iterates over, which in this example is each of the models in the project.
Example: InputQueries = padv.builtin.query.GetIterationArtifact

InputDependencyQuery — Artifact dependencies for task inputs
padv.Query object | name of padv.Query object

Artifact dependencies for task inputs, specified as a padv.Query object or the name of a
padv.Query object.

The build system runs the query specified by InputDependencyQuery to find the dependencies for
the task inputs, since those dependencies can affect whether task results are up-to-date. Typically,
you specify InputDependencyQuery as padv.builtin.query.GetDependentArtifacts to get
the dependent artifacts for each task input. For example, if you specify a model as an input to a task
and you specify InputDependencyQuery as padv.builtin.query.GetDependentArtifacts,
the build system can find artifacts, such as data dictionaries, that the model uses.
Example: InputDependencyQuery = padv.builtin.query.GetDependentArtifacts

Action — Function that task runs
function handle

Function that the task runs, specified as the function handle. When you run the task, the task runs
the function specified by the function handle.

For example, if you want the task to run the function myFunction, specify Action as @myFunction.
Example: Action = @myFunction
Data Types: function_handle

RequiredIterationArtifactType — Artifact type that task can run on
string

Artifact type that the task can run on, specified by a string. The required iteration artifact type must
be the artifact type supported by the IterationQuery property of the task.

For a list of valid artifact types, see the chapter "Artifact Types" in this PDF.
Example: RequiredIterationArtifactType = "sl_model_file"
Data Types: string

Licenses — List of licenses that task requires
string array

List of licenses that the task requires, specified as a string array.
Example: Licenses = ["matlab_report_gen" "simulink_report_gen"]
Data Types: string

2 Process Modeling System API

2-20

AllLicenseRequired — Setting to require all licenses for task
true or 1 (default) | false or 0

Setting to require all licenses for task, specified as a numeric or logical 1 (true) or 0 (false). By
default, all licenses in the Licenses property of the task are required for the task to run. Specify 0
(false) if the task can run without all licenses listed in the Licenses property.
Example: AllLicenseRequired = false
Data Types: logical

DescriptionText — Task description
string

Task description, specified as a string.
Example: "This task runs myScript."
Data Types: string

DescriptionCSH — Path to task documentation
string

Path to task documentation, specified as a string.
Example: DescriptionCSH =
fullfile(pwd,"taskHelpFiles","myTaskDocumentation.pdf")

Data Types: string

Output Arguments
taskObj — Task object
padv.Task object

Task object, returned as a padv.Task object.

For more information, see the documentation for "padv.Task" in this PDF.

 addTask

2-21

padv.Query
Select set of artifacts from project

Description
A padv.Query object represents a query that you can use to select a set of artifacts from a project.
Use the input arguments to define the set of artifacts that the query selects. Queries can either be
function-based or class-based. Use FunctionHandle to specify a function for a function-based query
or use inheritance for a class-based query.

Creation

Syntax
Q = padv.Query(Name)
Q = padv.Query(___ ,Name = Value)

Description

Q = padv.Query(Name) creates a query object with the name Name.

Q = padv.Query(___ ,Name = Value) specifies query properties using one or more name-value
arguments. For example, DefaultArtifactType = "sl_model_file" changes the default
artifact type for the query from a generic output file, "padv_output_file", to a model file,
"sl_model_file".

Input Arguments

Name — Unique identifier for query
character vector | string

Unique identifier for query, specified as character vector or string. You can only specify a query name
when you create a query object. You cannot change the query name after you create the query object.

Each query in the process model must have a unique name.
Example: "CustomQueryForArtifacts"
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: DefaultArtifactType = "sl_model_file"

Title — Human-readable name for query
character vector | string

2 Process Modeling System API

2-22

Human-readable name for query, specified as character vector or string.
Example: Title = "Custom Query for Artifacts"
Data Types: char | string

DefaultArtifactType — Expected artifact type
"padv_output_file" (default) | valid value for the Type property of a padv.Artifact object

Expected artifact type, specified as a valid value for the Type property of a padv.Artifact object.
padv.Task objects use the DefaultArtifactType to confirm that the artifacts output by the query
are the types of artifacts required by the padv.Task object.

When you use the run function on a query object, the DefaultArtifactType is the default value
for artifacts returned by the function.
Example: DefaultArtifactType = "sl_model_file"

Parent — Initial query run before iteration query
padv.Query object | Name of padv.Query object

Initial query run before iteration query, specified as either a padv.Query object or the Name of a
padv.Query object. When you specify a padv.Query object as the iteration query for a task, the
Parent query is the initial query that the build system runs before running the specified iteration
query.

For example, the built-in querypadv.builtin.query.FindModelsWithTestCases has the
Parent query padv.builtin.query.FindModels. If you specify
padv.builtin.query.FindModelsWithTestCases as the iteration query for a task, you are
specifying that you want the task to run once for each model with a test case. The build system runs
the Parent query padv.builtin.query.FindModels first, to find the models in the project, and
then the build system runs the iteration query padv.builtin.query.FindModelsWithTestCases
to find the models with test cases.

The build system ignores the Parent query when you specify a query as an input query or
dependency query for a task.
Example: "padv.builtin.query.FindModels"

ShowFileExtension — Show file extensions for returned artifacts
0 (false) | 1 (true)

Show file extensions in the Alias property of returned artifacts, specified as a numeric or logical 1
(true) or 0 (false). The Alias property controls the display name for the artifact in the Tasks
column in Process Advisor.

By default, queries strip file extensions from the Alias property of each task iteration artifact. To
show file extensions for all artifacts in the Tasks column, select the project setting Show file
extensions. To keep file extensions in the results for a specific query, specify the query property
ShowFileExtension as true.
Example: true
Data Types: logical

SortArtifacts — Setting for automatically sorting artifacts by address
true or 1 (default) | false or 0

 padv.Query

2-23

Setting for automatically sorting artifacts by address, specified as a numeric or logical 1 (true) or 0
(false). When a query returns artifacts, the artifacts should be in a consistent order. By default, the
build system sorts artifacts by the artifact address.

Alternatively, you can sort artifacts in a different order by overriding the internal sortArtifacts
method in a subclass that defines a custom sort behavior. For an example, see "Sort Artifacts in
Specific Order" in the User's Guide PDF.

The build system automatically calls the sortArtifacts method when using the process model. The
sortArtifacts method expects two input arguments: a padv.Query object and a list of
padv.Artifact objects returned by the run function. The sortArtifacts method should return a
list of sorted padv.Artifact objects.
Example: SortArtifacts = false
Data Types: logical

FunctionHandle — Handle to function that runs when you run query object
function_handle

Handle to function that runs when you run query object, specified as a function_handle.

When you call the run function on a query object, run runs the function specified by the
function_handle.
Example: FunctionHandle = @FunctionForQuery
Data Types: function_handle

2 Process Modeling System API

2-24

run
Return artifacts from query

Syntax
artifacts = run(queryObj)
artifacts = run(queryObj,inputArtifact)

Description
artifacts = run(queryObj) returns the artifacts in the project folder that match the criteria
specified by the query queryObj.

Typically, you use queries inside your process model and the build system automatically runs the
queries as needed, but you can use the run function to run a query outside of your process model to
confirm which artifacts the query returns. For examples of how to run specific built-in queries, see
"Built-In Query Library".

artifacts = run(queryObj,inputArtifact) returns the artifacts in the project folder that
match the criteria specified by the query queryObj and are associated with the artifact
inputArtifact. If you use the query as an iteration query or dependency query, the build system
can use inputArtifact to determine the scope of the artifacts that the query returns, which can be
helpful for queries that need an input artifact from a parent query.

Examples

Test Query Outside Process Model

Although you typically use queries inside your process model, you can run queries outside of your
process model to confirm which artifacts the query returns.

1 Open a project. For this example, you can open the Process Advisor example project.

processAdvisorExampleStart

2 Create an instance of a query. For this example, you can create an instance of the built-in query
padv.builtin.query.FindArtifacts. You can use the arguments of the query to filter the
query results. For example, you can use the IncludeLabel argument to have the query only
return artifacts that use the Design project label from the Classification project label
category.

q = padv.builtin.query.FindArtifacts(...
IncludeLabel = {'Classification','Design'});

For a list of the built-in queries, see "Built-In Query Library". If your use case requires custom
queries instead, see "Create Custom Query" in the User's Guide PDF.

3 Run the query and inspect the array of artifacts that the query returns.

artifacts = run(q)

 run

2-25

artifacts =

 1×24 Artifact array with properties:

 Type
 Parent
 ArtifactAddress
 Alias

Input Arguments
queryObj — Query object
padv.Query object | built-in query object

Query object, specified as a padv.Query object, built-in query object, or any object whose class that
inherits from the padv.Query class or a built-in query class.

For information on the built-in queries, see "Built-In Query Library". If your use case requires custom
queries instead, see "Create Custom Query" in the User's Guide PDF.
Example: q = padv.Query("myQueryName")
Example: q = padv.builtin.query.FindArtifacts

inputArtifact — Input artifact that query needs
padv.Artifact

Input artifact that the query needs, specified as a padv.Artifact object.

Output Arguments
artifacts — Artifacts that query returns
padv.Artifact

Artifacts that query returns, returned as an array of padv.Artifact objects.

2 Process Modeling System API

2-26

padv.Subprocess
Group tasks

Description

Creation
A padv.Subprocess object represents a group of tasks in a padv.ProcessModel process. In your
process model, use the object functions addTask and addSubprocess to group tasks and
subprocesses inside your subprocess. You can use the object functions dependsOn and runsAfter to
specify the dependencies and desired execution order for a subprocess.

Properties
Title — Human readable name that appears in Process Advisor app
string

Human readable name that appears in the Tasks column of the Process Advisor app, returned as a
string. By default, the Process Advisor app uses the Name property of the task as the Title.
Example: padv.Task("myTask",Title = "My Task")
Data Types: string

DescriptionText — Task description
string

Task description, returned as a string.
Example: padv.Task("myTask",DescriptionText = "This is my task.")
Data Types: string

DescriptionCSH — Path to task documentation
string

Path to task documentation, returned as a string.
Example: padv.Task("myTask",DescriptionCSH =
fullfile(pwd,"taskHelpFiles","myTaskDocumentation.pdf"))

Data Types: string

RequiredIterationArtifactType — Artifact type that subprocess can run on
string

Artifact type that the subprocess can run on, returned as a string. The required iteration artifact type
must be the artifact type supported by the IterationQuery property of the subprocess. For a list of
valid artifact types, see the chapter "Artifact Types" in this PDF.

 padv.Subprocess

2-27

Data Types: string

LaunchToolAction — Function that launches a tool
function handle

Function that launches a tool, returned as the function handle.

When the property LaunchToolAction is specified, you can point to the task in the Process Advisor
app and click the ellipsis (...) and then Open Tool Name to open the tool associated with the task.

For tasks that are not built-in tasks, the task options show the ellipsis (...) and then Launch Tool.
Example: padv.Task("myTask",LaunchToolAction = @openTool)
Data Types: function_handle

LaunchToolText — Description of action that LaunchToolAction property performs
"Launch Tool" (default) | string scalar

Description of the action that the LaunchToolAction property performs, returned as a string scalar.
Example: padv.Task("myTask",LaunchToolAction = @openTool, LaunchToolText =
"Open tool.")

Data Types: string

Enabled — Controls if the padv.Task is enabled in the process model
true or 1 (default) | false or 0

Controls if the padv.Task is enabled in the process model, returned as a numeric or logical 1 (true)
or 0 (false).
Example: padv.Task("myTask",Enabled = false)
Data Types: logical

OutputDirectory — Location for standard outputs that tasks in subprocess produce
string

Location for standard outputs that tasks in the subprocess produce, specified as a string.
Example: fullfile("folder", "subfolder")
Data Types: string

CacheDirectory — Location for additional cache files that tasks in subprocess produce
string

Location for additional cache files that tasks in the subprocess produce, specified as a string. The
cache directory can contain temporary files that do not need to be either saved in the task results or
archived by a CI system.
Example: fullfile("folder", "subfolder")
Data Types: string

2 Process Modeling System API

2-28

Object Functions
• addTask(subprocessObject, taskNameOrInstance, NAME, VALUE, ...)
• addSubprocess(subprocessObject, subprocessNameOrInstance, NAME, VALUE, ...)
• dependsOn(subprocessObject, DEPENDENCIES, NAME, VALUE, ...)
• runsAfter(subprocessObject, PREDECESSORS, NAME, VALUE, ...)

Examples
Group Tasks Inside Subprocess

You can use a subprocess to group related tasks, create a hierarchy of tasks, and share parts of a
process. A subprocess is a self-contained sequence of tasks, inside a process or other subprocess, that
can run standalone.

To group the tasks in your process model:

1 In the process model, add a subprocess by using addSubprocess on your process model object.

spA = pm.addSubprocess("Subprocess A");
2 Add your tasks directly to the subprocess by using addTask.

tA1 = spA.addTask("Task A1");
tA2 = spA.addTask("Task A2");

Note You do not need to add the task to both the subprocess and process model.

3 Specify the relationship between the tasks and subprocesses in your process.

You can use the dependsOn and runsAfter functions to define the relationships.

For example, the following process model defines a process in which Task 1 runs, then
Subprocess A, and then Subprocess B.

function processmodel(pm)
 % Defines the project's processmodel

 arguments

 padv.Subprocess

2-29

 pm padv.ProcessModel
 end

 t1 = pm.addTask("Task 1");

 spA = pm.addSubprocess("Subprocess A");
 tA1 = spA.addTask("Task A1");
 tA2 = spA.addTask("Task A2");
 spB = pm.addSubprocess("Subprocess B");
 tB1 = spB.addTask("Task B1");
 tB2 = spB.addTask("Task B2");

 % Relationships
 spA.dependsOn(t1);
 tA2.dependsOn(tA1);
 spB.dependsOn(spA);
 tB2.dependsOn(tB1);

end

The build system executes each of the tasks inside a subprocess before existing the subprocess.

The following diagram shows a graphical representation of the relationships defined by that
process model.

Note Relationships cannot cross any subprocess boundaries. For example, in this process model,
you cannot directly specify that Task A1 depends on Task 1 because that relationship would
enter into Subprocess A, crossing the subprocess boundary.

2 Process Modeling System API

2-30

 padv.Subprocess

2-31

padv.Task Class
Namespace: padv

Single step in process

Description
A padv.Task object represents a single step in a padv.ProcessModel process. For example, a
padv.Task object could represent a step like checking modeling standards, running tests,
generating code, or performing a custom action. padv.Task objects can accept project artifacts as
inputs, perform actions, generate assessments, and return project artifacts as outputs. You can add a
task to your process model by using the function addTask. Then, in your process model, use the
object functions addInputQueries, dependsOn, and runsAfter to specify the inputs,
dependencies, and desired execution order for a task. You can execute tasks as part of a pipeline. Use
the runprocess function to generate and run a pipeline of tasks.

Creation
Syntax
taskObject = padv.Task(Name)
taskObject = padv.Task(___ ,Name=Value)

Description

taskObject = padv.Task(Name) represents a task, named Name, in a padv.ProcessModel
process. Each task object in a process must have a unique Name.

taskObject = padv.Task(___ ,Name=Value) sets properties using one or more name-value
arguments. For example,
padv.Task("myTask",IterationQuery=padv.builtin.query.FindModels) creates a task
object named myTask that runs once for each model.

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Properties
Public Properties

Name — Unique identifier for task in process
string

Unique identifier for task in process, returned as a string. When you specify the Name, you specify the
Name property of the task object.

Each task in the process model must have a unique Name. After you specify a Name for a padv.Task
object, you cannot change the Name.

2 Process Modeling System API

2-32

Example: padv.Task("myTask") creates a task with the Name myTask
Data Types: string

Title — Human readable name that appears in Process Advisor app
string

Human readable name that appears in the Tasks column of the Process Advisor app, returned as a
string. By default, the Process Advisor app uses the Name property of the task as the Title.
Example: padv.Task("myTask",Title = "My Task")
Data Types: string

DescriptionText — Task description
string

Task description, returned as a string.
Example: padv.Task("myTask",DescriptionText = "This is my task.")
Data Types: string

DescriptionCSH — Path to task documentation
string

Path to task documentation, returned as a string.
Example: padv.Task("myTask",DescriptionCSH =
fullfile(pwd,"taskHelpFiles","myTaskDocumentation.pdf"))

Data Types: string

Action — Function that task runs
function handle

Function that the task runs, returned as the function handle. When you run the task, the task runs the
function specified by the function handle.

For example, if you want the task to run the function myFunction, specify Action as @myFunction.
Example: padv.Task("myTask",Action = @myFunction)
Data Types: function_handle

RequiredIterationArtifactType — Artifact type that task can run on
string

Artifact type that the task can run on, returned by a string. The required iteration artifact type must
be the artifact type supported by the IterationQuery property of the task.

For a list of valid artifact types, see the chapter "Artifact Types" in this PDF.
Example: padv.Task("myTask",RequiredIterationArtifactType = "sl_model_file")
Data Types: string

IterationQuery — Artifacts that task iterates over
padv.Query object | name of padv.Query object

 padv.Task Class

2-33

Artifacts that task iterates over, returned as a padv.Query object or the name of a padv.Query
object. By default, task objects run one time and are associated with the project. When you specify
IterationQuery, the task runs one time for each artifact returned by the padv.Query. In the
Process Advisor app, the artifacts returned by IterationQuery appear under task title.

For example, if the IterationQuery for a task finds three models, Model_A, Model_B, and
Model_C, the build system creates three task iterations under the title of the task in the Tasks
column.

Each of the artifacts under the task title represents a task iteration.

For an example of the effect of different IterationQuery values:

• If you have a task where the IterationQuery uses padv.builtin.query.FindModels to find
each of the models in the project, the build system creates a task iteration for each model.

• If you have a task where the IterationQuery uses padv.builtin.query.FindProjectFile
to find the project file, the build system creates a task iteration for the project file.

• If you have a task where the IterationQuery uses padv.builtin.query.FindTopModels to
find top models in the project, the build system creates a task iteration for each top model.

Example: padv.Task("myTask",IterationQuery = padv.builtin.query.FindModels)
Data Types: string

InputDependencyQuery — Artifact dependencies for task inputs
padv.Query object | name of padv.Query object

2 Process Modeling System API

2-34

Artifact dependencies for task inputs, returned as a padv.Query object or the name of a
padv.Query object.

Artifact dependencies for task inputs, specified as a padv.Query object or the name of a
padv.Query object.

The build system runs the query specified by InputDependencyQuery to find the dependencies for
the task inputs, since those dependencies can affect whether task results are up-to-date. Typically,
you specify InputDependencyQuery as padv.builtin.query.GetDependentArtifacts to get
the dependent artifacts for each task input. For example, if you specify a model as an input to a task
and you specify InputDependencyQuery as padv.builtin.query.GetDependentArtifacts,
the build system can find artifacts, such as data dictionaries, that the model uses.
Example: InputDependencyQuery = padv.builtin.query.GetDependentArtifacts

IncludeMatlabWarningsInResults — Automatically include number of MATLAB warning
messages in padv.TaskResult
false or 0 (default) | true or 1

Automatically include the number of MATLAB warning messages in the padv.TaskResult, returned
as a numeric or logical 0 (false) or 1 (true).
Example: true
Data Types: logical

Licenses — List of licenses that task requires
string array

List of licenses that the task requires, returned as a string array.
Example: padv.Task("myTask",Licenses = ["matlab_report_gen"
"simulink_report_gen"])

Data Types: string

Products — List of products that must be installed to run task
string array

List of products that must be installed to run the task, returned as a string array.
Data Types: string

AllLicenseRequired — Setting to require all licenses for task
true or 1 (default) | false or 0

Setting to require all licenses for task, returned as a numeric or logical 1 (true) or 0 (false). By
default, all licenses in the Licenses property of the task are required for the task to run. Specify 0
(false) if the task can run without all licenses listed in the Licenses property.
Example: padv.Task("myTask",AllLicenseRequired = false)
Data Types: logical

LaunchToolAction — Function that launches a tool
function handle

Function that launches a tool, returned as the function handle.

 padv.Task Class

2-35

When the property LaunchToolAction is specified, you can point to the task in the Process Advisor
app and click the ellipsis (...) and then Open Tool Name to open the tool associated with the task.

For tasks that are not built-in tasks, the task options show the ellipsis (...) and then Launch Tool.
Example: padv.Task("myTask",LaunchToolAction = @openTool)
Data Types: function_handle

LaunchToolText — Description of action that LaunchToolAction property performs
"Launch Tool" (default) | string scalar

Description of the action that the LaunchToolAction property performs, returned as a string scalar.
Example: padv.Task("myTask",LaunchToolAction = @openTool, LaunchToolText =
"Open tool.")

Data Types: string

Enabled — Controls if the padv.Task is enabled in the process model
true or 1 (default) | false or 0

Controls if the padv.Task is enabled in the process model, returned as a numeric or logical 1 (true)
or 0 (false).
Example: padv.Task("myTask",Enabled = false)
Data Types: logical

AlwaysRun — Always force task to run, even if the task results are already up to date
false or 0 (default) | true or 1

Always force task to run, even if the task results are already up to date, returned as a numeric or
logical 0 (false) or 1 (true).
Example: padv.Task("myTask",AlwaysRun = true)
Data Types: logical

TrackOutputs — Track changes to output files
true or 1 (default) | false or 0

Track changes to output files, specified as a numeric or logical 1 (true) or 0 (false).

By default, the build system tracks changes to outputs files from tasks unless the files are outside the
project. If you make a change to an output file, the task status are results are marked as outdated. If
you specify TrackOutputs as false, any changes you make to the task output files do not make the
task status and results outdated.

For more information, see "Turn Off Change Tracking for Task Outputs" in the User's Guide PDF.
Example: false
Data Types: logical

InputQueries — Inputs to task
padv.Query object | name of padv.Query object | array of padv.Query objects

Inputs to the task, returned as:

2 Process Modeling System API

2-36

• a padv.Query object
• the name of padv.Query object
• an array of padv.Query objects
• an array of names of padv.Query objects

By default, the task does not specify any artifacts as inputs. When you specify InputQueries, the
task tasks the artifacts returned by the specified query or queries as an input.

Suppose a task runs once for each model in the project and you want to provide the models as inputs
to the task. If you specify InputQueries as the built-in query
padv.builtin.query.GetIterationArtifact, the query returns each artifact that the tasks
iterates over, which in this example is each of the models in the project.
Example: padv.Task("myTask",InputQueries =
padv.builtin.query.GetIterationArtifact)

OutputDirectory — Location for standard outputs that the task produces
"" (default) | string array

Location for standard outputs that the task produces, specified as a string.

Built-in tasks automatically specify OutputDirectory. If you do not specify OutputDirectory for
a custom task, the build system stores task outputs in the DefaultOutputDirectory specified by
padv.ProcessModel.
Data Types: string

CacheDirectory — Location for any additional cache files that the task generates
string array

Location for any additional cache files that the task generates, specified as a string. The cache
directory can contain temporary files that do not need to be either saved in the task results or
archived by a CI system.
Data Types: string

CISupportOutputsForTask — List of CI aware result file types generated for task
"JUnit" (default) | string array

List of CI aware result file types to be generated for task, specified as a string array.
Data Types: string

CISupportOutputsByTask — List of CI aware result file types generated by task
empty string (default) | string array

List of CI aware result file types generated by task, specified as a string array.
Data Types: string

 padv.Task Class

2-37

Methods
Object Functions

Object Function Description
addInputQueries Add the input artifacts returned by

inputQueries as inputs to the task represented
by taskObj.

addInputQueries(taskObj,inputQueries)

dependsOn Create a dependency between a task, taskObj,
and dependencies, dependencies.

dependsOn(taskObj,dependencies)

run Run task represented by taskObj.

taskResult = run(taskObj)

If the task requires inputs, specify the inputs
using inputArtifacts.

taskResult = run(taskObj,inputArtifacts)

runsAfter Specify the preferred execution order for tasks by
specifying the tasks, predecessors, that a task,
taskObj, should run after.

runsAfter(taskObj,predecessors)

See the next sections for more information on these object functions.

Examples

Create Task Objects and Add Tasks to Process Model

You can use padv.Task to create task objects and then use the addTask function to add the task
objects to the padv.ProcessModel object.

Open the Process Advisor example project.

processAdvisorExampleStart

The model AHRS_Voter opens with the Process Advisor pane to the left of the Simulink canvas.

In the Process Advisor pane, click the Edit process model button to open the processmodel.m
file for the project.

Replace the contents of the processmodel.m file with this code:

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

2 Process Modeling System API

2-38

 taskA = padv.Task("taskA");
 taskB = padv.Task("taskB");

 runsAfter(taskB,taskA);

 addTask(pm,taskA);
 addTask(pm,taskB);

end

This code uses padv.Task to create two task objects: taskA and taskB.

The object function runsAfter specifies that taskB should run after taskA.

The function addTask adds the task objects to the padv.ProcessModel object.

 padv.Task Class

2-39

addInputQueries
Namespace: padv

Add input artifacts as inputs to task

Syntax
addInputQueries(taskObj,inputQueries)

Description
addInputQueries(taskObj,inputQueries) adds the input artifacts returned by inputQueries
as inputs to the task represented by taskObj.

If the task already has input queries specified, addInputQueries adds inputQueries to the list of
input queries in the InputQueries property.

Examples

Add Inputs to Task

Use addInputQueries to specify the models in the project as inputs to a task.

Create a new padv.Task object myTaskObj that represents a task named runForEachModel.

myTaskObj = padv.Task("runForEachModel");

By default, the task does not have any inputs.

Use the function addInputQueries to add the built-in query padv.builtin.query.FindModels
as the input query for the task.

addInputQueries(myTaskObj,padv.builtin.query.FindModels);

When you run the task defined by myTaskObj, the query padv.builtin.query.FindModels finds
each model in the project and provides the models as the input artifacts for the task.

Input Arguments
taskObj — Task object that represents task
padv.Task object

Task object that represents a task, specified as a padv.Task object.
Example: myTaskObj = padv.Task("myTask");

inputQueries — Queries that get input artifacts for task
padv.Query object | array of padv.Query objects

2 Process Modeling System API

2-40

A query or queries that get the input artifacts for a task, specified as a padv.Query object or an
array of padv.Query objects. Each artifact that the query or queries return becomes an input to the
task.

For example, if you specify the InputQueries property for a task as the query
padv.builtin.query.FindModels, the query returns each model and the models become input
artifacts for the task.

Note You can only specify the following queries for the inputQueries argument:

• padv.builtin.query.FindArtifacts
• padv.builtin.query.FindFileWithAddress
• padv.builtin.query.FindModels
• padv.builtin.query.FindProjectFile
• padv.builtin.query.FindRequirements
• padv.builtin.query.FindRequirementsForModel
• padv.builtin.query.FindTestCasesForModel
• padv.builtin.query.FindTopModels
• padv.builtin.query.GetDependentArtifacts
• padv.builtin.query.GetIterationArtifact
• padv.builtin.query.GetOutputsOfDependentTask

You cannot specify the following queries for inputQueries:

• padv.builtin.query.FindFilesWithLabel
• padv.builtin.query.FindModelsWithLabel
• padv.builtin.query.FindModelsWithTestCases
• padv.builtin.query.FindRefModels

Example: addInputQueries(myTaskObj,padv.builtin.query.FindModels)
Example: addInputQueries(myTaskObj,
[padv.builtin.query.GetIterationArtifact,padv.builtin.query.GetDependentArtif
acts])

 addInputQueries

2-41

dependsOn
Namespace: padv

Create dependency between tasks

Syntax
dependsOn(taskObj,dependencies)
dependsOn(___ ,Name=Value)

Description
dependsOn(taskObj,dependencies) creates a dependency between taskObj and
dependencies. taskObj runs only after the tasks specified by dependencies run and return a task
status.

dependsOn(___ ,Name=Value) specifies how the build system handles dependencies using one or
more Name=Value arguments.

Examples

Create Dependency Between Two Tasks

Use the dependsOn function to create a dependency between two tasks in a process model.

Open the Process Advisor example project.

processAdvisorExampleStart

Open the processmodel.m file. The file is at the root of the project.

Replace the contents of the processmodel.m file with the following code:

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 TaskA = padv.Task("TaskA");
 TaskB = padv.Task("TaskB");

 dependsOn(TaskB,TaskA);

 addTask(pm,TaskA);
 addTask(pm,TaskB);

end

This code uses padv.Task to create two task objects: TaskA and TaskB.

The object function dependsOn specifies that TaskB depends on TaskA.

2 Process Modeling System API

2-42

The function addTask adds the task objects to the padv.ProcessModel object.

Open the Process Advisor app. In the MATLAB Command Window, enter:

processAdvisorWindow

In the Tasks column, point to the run button for TaskB. The Process Advisor app automatically
highlights both tasks since TaskA is a dependent task. If you click the run button for TaskB, TaskA
will run before TaskB.

Input Arguments
taskObj — Task object that represents task
padv.Task object

Task object that represents a task, specified as a padv.Task object.
Example: myTaskObj = padv.Task("myTask");

dependencies — Tasks that need to run before taskObj runs
string | character vector | padv.Task object

Tasks that need to run before taskObj runs, specified as either:

• The name of a task, specified as a string or character vector.
• A padv.Task object.

Example: dependsOn(TaskB,"TaskA")
Example: dependsOn(TaskB,TaskA)
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: dependsOn(TaskB,TaskA,WhenStatus=["Pass","Fail"])

IterationArtifactMatching — Setting that controls which dependent task iterations run
true or 1 (default) | false or 0

 dependsOn

2-43

Setting that controls which dependent task iterations run, specified as a numeric or logical 1 (true)
or 0 (false):

• true — When the build system runs the dependencies of a task, the build system runs only the
task iterations that the tasks have in common.

• false — When the build system runs the dependencies of a task, the build system runs all task
iterations. This behavior is useful when you have a task that creates new project artifacts and a
task that runs on each artifact in the project. The second task depends on all project artifacts
generated by the first task.

For example, suppose you have two tasks: TaskA and TaskB:

• TaskA runs on ModelA and ModelB.
• TaskB runs only on ModelB and depends on TaskA.

If you run TaskB and:

• IterationArtifactMatching is true, TaskA runs only on ModelB.

• IterationArtifactMatching is false, TaskA runs on both ModelA and ModelB.

Example: dependsOn(TaskB,TaskA,IterationArtifactMatching=false)
Data Types: logical

WhenStatus — Setting that controls when dependencies run
"Pass" (default) | ["Pass","Fail"] | ["Pass","Fail","Error"]

Setting that controls when dependencies run, specified as either:

2 Process Modeling System API

2-44

• "Pass" — Only run the task if the dependencies pass. For example, if TaskB depends on TaskA,
TaskA needs to pass before TaskB runs. If TaskA fails or errors, TaskB does not run.

• ["Pass","Fail"] — Only run the task if the dependencies either pass or fail. For example, if
TaskB depends on TaskA, TaskA needs to either pass or fail before TaskB runs. If TaskA errors,
TaskB does not run.

• ["Pass","Fail","Error"] — The task runs, even if the dependencies fail or error. For
example, if TaskB depends on TaskA, TaskA can pass, fail, or error and TaskB still runs.

Example: dependsOn(TaskB,TaskA,WhenStatus=["Pass","Fail"])
Data Types: string

 dependsOn

2-45

run
Namespace: padv

Run task

Syntax
taskResult = run(taskObj)
taskResult = run(taskObj,inputArtifacts)

Description
taskResult = run(taskObj) runs the task represented by taskObj and returns the result from
the task.

How a task runs depends on how the you define the task. You can define tasks using a function or a
class:

• Function-based tasks — Runs the function specified by the Action property of the task.
• Class-based task — Runs the run function implemented inside the class definition.

By default, when you create a padv.Task object, the task is a function-based task, even if you do not
specify an Action property for the task.

taskResult = run(taskObj,inputArtifacts) uses the artifacts specified by inputArtifacts
as inputs to the task. The InputQueries property of the task specifies the query that provides the
inputArtifacts for the task.

Examples

Run Task

Create a new padv.Task object and run the task.

Create a new padv.Task object myTaskObj that represents a task named myTask.

myTaskObj = padv.Task("myTask");

Use the run object function to run the task. Save the results to the variable taskResults.

taskResults = run(myTaskObj)

taskResults =

 TaskResult with properties:

 Status: Pass
 OutputArtifacts: [0×0 padv.Artifact]
 Details: [1×1 struct]
 ResultValues: [1×1 struct]

2 Process Modeling System API

2-46

In this example, there is no Action associated with the task and the task returns a
padv.TaskResult with a Status of Pass.

Input Arguments
taskObj — Task object that represents task
padv.Task object

Task object that represents a task, specified as a padv.Task object.
Example: myTaskObj = padv.Task("myTask");

inputArtifacts — Artifacts that are inputs to task
cell array of padv.Artifact objects

Artifacts that are inputs to the task, specified as a cell array of padv.Artifact objects.

If you specified the InputQueries property for a task, the InputQueries automatically passes a
cell array of padv.Artifact objects to inputArtifacts when you run the task.

Output Arguments
taskResult — Result from task
TaskResult object

Result from the task, returned as a TaskResult object.

 run

2-47

runsAfter
Namespace: padv

Specify preferred execution order for tasks

Syntax
runsAfter(taskObj,predecessors)
runsAfter(___ ,Name=Value)

Description
runsAfter(taskObj,predecessors) specifies a preferred execution order for tasks. If possible,
the build system runs the predecessor tasks, specified by predecessors, before the task
represented by taskObj.

runsAfter(___ ,Name=Value) specifies how the build system handles the preferred execution
order using one or more Name=Value arguments.

Examples

Specify Preferred Execution Order for Two Tasks

Use the runsAfter function to specify that one task should run after another task.

Open the Process Advisor example project.

processAdvisorExampleStart

Open the processmodel.m file. The file is at the root of the project.

Replace the contents of the processmodel.m file with the following code:

function processmodel(pm)
 arguments
 pm padv.ProcessModel
 end

 FirstTask = padv.Task("FirstTask");
 SecondTask = padv.Task("SecondTask");

 runsAfter(SecondTask,FirstTask);

 addTask(pm,FirstTask);
 addTask(pm,SecondTask);

end

This code uses padv.Task to create two task objects: FirstTask and SecondTask.

The object function runsAfter specifies that SecondTask should run after FirstTask.

2 Process Modeling System API

2-48

The function addTask adds the task objects to the padv.ProcessModel object.

Open the Process Advisor app. In the MATLAB Command Window, enter:

processAdvisorWindow

In the toolstrip, click the Run All button. You can see that SecondTask runs after FirstTask.

Input Arguments
taskObj — Task object that represents task
padv.Task object

Task object that represents a task, specified as a padv.Task object.
Example: myTaskObj = padv.Task("myTask");

predecessors — Tasks that should run before taskObj runs
string | character vector | padv.Task object

Tasks that should run before taskObj runs, specified as either:

• The name of a task, specified as a string or character vector.
• A padv.Task object.

Example: runsAfter(SecondTask,"FirstTask")
Example: runsAfter(SecondTask,FirstTask)

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: runsAfter(SecondTask,FirstTask,StrictOrdering=true)

IterationArtifactMatching — Setting that controls which predecessor task iterations run
true or 1 (default) | false or 0

Setting that controls which predecessor task iterations run, specified as a numeric or logical 1 (true)
or 0 (false):

• true — When the build system runs the predecessors of a task, the build system runs only the
task iterations that the tasks have in common.

• false — When the build system runs the predecessor of a task, the build system runs all task
iterations. This behavior is useful when you have a task that creates new project artifacts and a
task that runs on each artifact in the project. The second task should run after all project artifacts
are generated by the first task.

For example, suppose you have two tasks: FirstTask and SecondTask:

• FirstTask runs on ModelA and ModelB.
• SecondTask runs only on ModelB and should run after on FirstTask.

If you run SecondTask and:

 runsAfter

2-49

• IterationArtifactMatching is true, FirstTask runs only on ModelB.
• IterationArtifactMatching is false, FirstTask runs on both ModelA and ModelB.

Example: runsAfter(SecondTask,FirstTask,IterationArtifactMatching=false)
Data Types: logical

StrictOrdering — Setting that controls whether build system ignores circular
relationships between tasks
false or 0 (default) | true or 1

Setting that controls whether the build system ignores circular relationships between tasks, specified
as a numeric or logical 0 (false) or 1 (true). By default, if you specify a circular relationship
between tasks, the build system ignores the relationship. For example, if you specify both
runsAfter(SecondTask,FirstTask) and runsAfter(FirstTask,SecondTask), the build
system ignores the runsAfter relationship.

If you specify StrictOrdering as true, the build system generates an error when you try to run
tasks that have a circular relationship.
Example: runsAfter(SecondTask,FirstTask,StrictOrdering=true)
Data Types: string

2 Process Modeling System API

2-50

padv.TaskResult
Create and access results from task

Description
A padv.TaskResult object represents the results from a task. The run function of a padv.Task
creates a padv.TaskResult object that you can use to access the results from the task. When you
create a custom task, you can specify the results from your custom task. You can also use the function
getProcessTaskResults to view a list of the last task results for a project. The Process Advisor
app uses task results to determine the task statuses, output artifacts, and detailed task results that
appear in the Tasks, Out, and Details columns of the app.

Creation

Syntax
resultObj = padv.TaskResult()

Description

resultObj = padv.TaskResult() creates a result object resultObj that represents the results
from a task.

Properties
Status — Task result status
Pass (default) | Fail | Error

Task result status, returned as:

• Pass — A passing task status. The task completed successfully without any issues.
• Fail — A failing task status. The task completed, but the results were not successful.
• Error — An error task status. The task generated an error and did not complete.

The Status property determines the task status shown in the Tasks column in the Process Advisor
app.

For custom tasks, you can specify the task result status as either:

• padv.TaskStatus.Pass — Sets the Status property to Pass.
• padv.TaskStatus.Fail — Sets the Status property to Fail.
• padv.TaskStatus.Error — Sets the Status property to Error.

For example, taskResult.Status = padv.TaskStatus.Fail sets the Status property of the
task result object to Fail to represent a failing task status.
Example: Fail

 padv.TaskResult

2-51

OutputArtifacts — Artifacts created by task
padv.Artifact object | array of padv.Artifact objects

Artifacts created by the task, returned as a padv.Artifact object or array of padv.Artifact
objects.

The OutputArtifacts property determines the output artifacts shown in the Out column in the
Process Advisor app.

The build system only manages output artifacts specified by the task result. For custom tasks, use the
OutputPaths argument to define the output artifacts for the task result.

Details — Temporary storage for task-specific data
struct

Temporary storage for task-specific data, returned as a struct. The build system uses Details to
store task-specific data that other build steps can use.

Note that Details are temporary. The build system does not save Details with the task results
after the build finishes.
Data Types: struct

ResultValues — Number of passing, warning, and failing conditions
struct with Pass: 0, Warn: 0, Fail: 0 (default) | struct with fields Pass, Warn, Fail

Number of passing, warning, and failing conditions, returned as a struct with fields:

• Pass — Number of passing conditions returned by task
• Warn — Number of warning conditions returned by task
• Fail — Number of failing conditions returned by task

The ResultValues property determines the detailed results shown in the Details column in the
Process Advisor app.

For example, the task padv.builtin.task.RunModelStandards runs several Model Advisor
checks and returns the number of passing, warning, and failing checks. If you run the task and one
check passes, two checks generate a warning, and three checks fail, ResultValue returns:

ans =

 struct with fields:

 Pass: 1
 Warn: 2
 Fail: 3

Data Types: struct

OutputPaths — Define OutputArtifacts for task result
string

This property is write-only.

OutputArtifacts for task result, specified as a string or string array.

2 Process Modeling System API

2-52

The build system adds each path specified by OutputArtifacts to the OutputArtifacts
argument as a padv.Artifact object with type padv_output_file.
Example: taskResultObj.OutputPaths = string(fullfile(pwd,filename))
Example: taskResultObj.OutputPaths = [string(fullfile(pwd,filename1)),
string(fullfile(pwd,filename2))]

Data Types: char | string

Object Functions
• applyStatus

Examples

Create Task Result for Custom Task

Create a padv.TaskResult object for a custom task that has a failing task status, outputs a
single .json file, and 1 passing condition, 2 warning conditions, and 3 failing conditions.

Open the Process Advisor example project.

processAdvisorExampleStart

The model AHRS_Voter opens with the Process Advisor pane to the left of the Simulink canvas.

In the Process Advisor pane, click the Edit process model button to open the processmodel.m
file for the project.

Replace the contents of the processmodel.m file with this example process model code:

function processmodel(pm)
 % Defines the project's processmodel

 arguments
 pm padv.ProcessModel
 end

 addTask(pm,"ExampleTask",Action=@ExampleAction);

end

function taskResult = ExampleAction(~)

 % Create a task result object that stores the results
 taskResult = padv.TaskResult();

 % Specify the task status shown in the Tasks column
 taskResult.Status = padv.TaskStatus.Fail;

 % Specify the output files shown in the Out column
 cp = currentProject;
 rf = cp.RootFolder;
 outputFile = fullfile(rf,"tools","sampleChecks.json");

 padv.TaskResult

2-53

 taskResult.OutputPaths = string(outputFile);

 % Specify the values shown in the Details column
 taskResult.ResultValues.Pass = 1;
 taskResult.ResultValues.Warn = 2;
 taskResult.ResultValues.Fail = 3;

end

Save the processmodel.m file.

Go back to the Process Advisor app and click Refresh Tasks to update the list of tasks shown in the
app.

In the top-left corner of the Process Advisor pane, switch the filter from Model to Project.

In the top-right corner of the Process Advisor pane, click Run All.

• The Tasks column shows a failing task status to the left of ExampleTask. This code from the
example process model specifies the task status shown in the Tasks column:

taskResult.Status = padv.TaskStatus.Fail;
• The Out column shows an output artifact associated with the task. This code from the example

process model specifies the output artifact shown in the Out column:

taskResult.OutputPaths = string(fullfile(pwd,outputFile));
• The Details column shows 1 passing condition, 2 warning conditions, and 3 failing conditions.

This code from the example process model specifies the detailed task results shown in the Details
column:

taskResult.ResultValues.Pass = 1;
taskResult.ResultValues.Warn = 2;
taskResult.ResultValues.Fail = 3;

2 Process Modeling System API

2-54

applyStatus
Namespace: padv

Apply new task status if priority is higher

Syntax
applyStatus(resultObj,taskStatus)

Description
applyStatus(resultObj,taskStatus) applies a new task status taskStatus to the task result
object resultObj if the priority level of taskStatus is higher than the current Status property of
the task result object.

The priority levels from lowest to highest are:

• padv.TaskStatus.Pass
• padv.TaskStatus.Fail
• padv.TaskStatus.Error

Note The function applyStatus can only change the Status to a higher priority status. For
example, if you apply a failing status and then apply a passing status, the status remains a failing
status because the priority of padv.TaskStatus.Fail is higher than the priority of
padv.TaskStatus.Pass.

taskResult = padv.TaskResult(); % By default, Status is Pass.
applyStatus(taskResult, padv.TaskStatus.Fail); % Status changes to Fail.
applyStatus(taskResult, padv.TaskStatus.Pass); % Status remains Fail.
taskResult

taskResult =

 TaskResult with properties:

 Status: Fail
 OutputArtifacts: [0×0 padv.Artifact]
 Details: [1×1 struct]
 ResultValues: [1×1 struct]

To set the Status property of a task result object to a specific value, manually set the property to
either padv.TaskStatus.Pass, padv.TaskStatus.Fail, or padv.TaskStatus.Error. For
example, to set the Status of a task result object taskResult to Pass, use taskResult.Status
= padv.TaskStatus.Pass.

Examples

 applyStatus

2-55

Apply Status to Task Result

Use applyStatus to update the Status property of a task result object. If the status is a higher
priority status, applyStatus updates the Status property of the task result object.

Create a task result object. By default, the Status property of the task result object is specified as
Pass.

taskResult = padv.TaskResult();

Suppose the task needs to generate an error. Use applyStatus to apply an error task status,
specified by padv.TaskStatus.Error.

applyStatus(taskResult,padv.TaskStatus.Error);

padv.TaskStatus.Error has a higher priority than a passing task status, so applyStatus
updates the Status property of the task result object.

Apply a passing task status to the task result object. A passing task status is specified by
padv.TaskStatus.Pass.

applyStatus(taskResult,padv.TaskStatus.Pass);

padv.TaskStatus.Pass does not have a higher priority than an error task status, so applyStatus
does not change the Status of the task result object.

Inspect the properties of the task result object.

taskResult

Suppose you want to reset the status of the task result object to a passing task status. Manually
specify the Status property as padv.TaskStatus.Pass.

taskResult.Status = padv.TaskStatus.Pass

taskResult =

 TaskResult with properties:

 Status: Pass
 OutputArtifacts: [0×0 padv.Artifact]
 Details: [1×1 struct]
 ResultValues: [1×1 struct]

The task result object now has a passing task status.

Input Arguments
resultObj — Task result object
padv.TaskResult object

Task result object, specified as a padv.TaskResult object.

taskStatus — Task status
padv.TaskStatus.Pass | padv.TaskStatus.Fail | padv.TaskStatus.Error

2 Process Modeling System API

2-56

Task status, specified as padv.TaskStatus.Pass, padv.TaskStatus.Fail, or
padv.TaskStatus.Error.
Example: padv.TaskStatus.Fail

 applyStatus

2-57

Build System API

The support package provides a build system that you can use to orchestrate and automate the steps
in your model-based design (MBD) pipeline. The build system is software that can orchestrate tasks,
efficiently execute tasks in the pipeline, and perform other actions related to the pipeline. You can
call the build system either through the Process Advisor app or by using the runprocess function.
When you call the build system, the build system loads the process model, analyzes the project, and
orchestrates the create of a pipeline of tasks.

For examples of how to use the build system, see the "Control Builds" and "Integrate into CI"
chapters in the user's guide.

Classes

Class Description
padv.BuildResult Result from build system build
padv.Preferences (To be removed) Set runprocess function

settings
padv.ProjectSettings Build system settings for project
padv.UserSettings Build system settings for user

Functions

Run Tasks

Function Description
runprocess Run task iterations defined by the process model

Get Task Iterations and Tasks Results

Function Description
createProcessTaskID Generate an ID for a specific task iteration

defined by the process model
generateProcessTasks Generate a list of the IDs for the task iterations

defined by the process model
getProcessTaskResults Get available results and result details for task

iterations defined by the process model

3

runprocess
Generate and run model-based design (MBD) pipeline using build system

Syntax
[buildResult,exitCode] = runprocess()
[buildResult,exitCode] = runprocess(Name=Value)

Description
[buildResult,exitCode] = runprocess() generate a model-based design (MBD) pipeline and
run the pipeline using the build system. The process model (processmodel.p or processmodel.m)
in the project defines the tasks for the pipeline.

[buildResult,exitCode] = runprocess(Name=Value) specifies how the MBD pipeline runs
using one or more Name=Value arguments.

Examples

Run MBD Pipeline

Open a project and use runprocess to generate and run the MBD pipeline using the build system.

Open the Process Advisor example project, which contains an example process model. The process
model defines the tasks for the pipeline.

processAdvisorExampleStart

Generate and run the MBD pipeline and store the results in the variable results.

results = runprocess()

Run Specific Tasks

Open a project and use runprocess. To only run a specific set of tasks, provide the task names to
the Tasks argument.

Open the Process Advisor example project, which contains an example process model. The process
model defines the tasks for the pipeline.

processAdvisorExampleStart

Run only the tasks Generate Simulink Web View
(padv.builtin.task.GenerateSimulinkWebView) and Check Modeling Standards
(padv.builtin.task.RunModelStandards) by specifying the Tasks argument.

% run the Generate Simulink Web View task
% and the Check Modeling Standards tasks

3 Build System API

3-2

runprocess(...
Tasks = ["padv.builtin.task.GenerateSimulinkWebView",...
"padv.builtin.task.RunModelStandards"])

Run Tasks Associated with Specific Artifact

Open a project and use runprocess. To only run the tasks associated with a specific artifact, provide
a full path, relative path, or a padv.Artifact object to the FilterArtifact argument.

Open the Process Advisor example project, which contains an example process model. The process
model defines the tasks for the pipeline.

processAdvisorExampleStart

Run tasks for the AHRS_Voter model by specifying the relative path to the model.

% run only the AHRS_Voter tasks
runprocess(...
FilterArtifact = fullfile(...
"02_Models","AHRS_Voter","specification","AHRS_Voter.slx"))

Run Specific Task Iteration, Clean Task Results, and Delete Task Outputs

Open a project and run one specific task iteration in the pipeline.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Get a list of the task iterations in the MBD pipeline.

tasks = generateProcessTasks;

Force runprocess to run one of the task iterations by specifying Force as true and Tasks as one
of the tasks in tasks.

runprocess(Force=true,Tasks=tasks(1))

When Force is true, runprocess runs the pipeline, even if the pipeline already had results that
were marked as up to date.

Clean task results and delete task outputs.

runprocess(Clean=true,DeleteOutputs=true)

When you clean task results and delete task outputs, it is as if the tasks were not run.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

 runprocess

3-3

Example: [buildResult,exitCode] = runprocess(Force=true)

Tasks — Names of tasks that you want to run
character vector | cell array of character vectors | string | string array

Names of tasks that you want to run, specified as a character vector, cell array of character vectors,
string, or string array. The task name is defined by the Name property of the task.

Alternatively, you can specify the task iteration IDs for individual task iterations that you want to run.
See "generateProcessTasks" and "createProcessTaskID" in this PDF for information.

Note You can only run tasks that are defined in the process model.

Example: "padv.builtin.task.GenerateSimulinkWebView"
Example: ["padv.builtin.task.GenerateSimulinkWebView",...
"padv.builtin.task.RunModelStandards"]

Data Types: char | string

Process — Name of process that you want to run
padv.ProcessModel.DefaultProcessId (default) | character vector | string

Name of process that you want to run, specified by a character vector or string.
Example: "CIPipeline"
Data Types: char | string

Subprocesses — Names of subprocesses that you want to run
character vector | cell array of character vectors | string | string array

Names of subprocesses that you want to run, specified as a character vector, cell array of character
vectors, string, or string array. The subprocess name is defined by the Name property of the
subprocess.
Example: "SubprocessA"
Example: ["SubprocessA",SubprocessB"]
Data Types: char | string

FilterArtifact — Artifacts that you want to run tasks for
string.empty (default) | string | padv.Artifact object | array of padv.Artifact objects

Artifact or artifacts that you want to run tasks for, specified as either the full path to an artifact,
relative path to an artifact, a padv.Artifact object that represents an artifact, or an array of
padv.Artifact objects.
Example: fullfile("C:\","User","projectA","myModel.slx")
Example: fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")
Example:
padv.Artifact("sl_model_file",fullfile("02_Models","AHRS_Voter","specificatio
n","AHRS_Voter.slx"))

Data Types: string

3 Build System API

3-4

Force — Skip or run up-to-date task iterations
false or 0 (default) | true or 1

Skip or run up-to-date tasks, specified as a numeric or logical 0 (false) or 1 (true). By default,
runprocess does not run task iterations that have up to date results.
Example: true
Data Types: logical

Isolation — Include task dependencies
false or 0 (default) | true or 1

Include task dependencies, specified as a numeric or logical 0 (false) or 1 (true).

By default, runprocess includes task dependencies when running a task. Specify Isolation as
true if you want to run a task in isolation, without running any task dependencies.

Note that you define task dependencies in the process model by using the function dependsOn.
Example: true
Data Types: logical

Clean — Clear task results and delete outputs
false or 0 (default) | true or 1

Clear task results and delete task outputs, specified as a numeric or logical 0 (false) or 1 (true).

If you specify Clean as true:

• The runprocess functions ignores other name-value arguments, cleans the task results, and
deletes task outputs.

• The OutputDirectory of the task might still contain files. The runprocess function only
deletes the task outputs, specified by the OutputPaths property of the padv.TaskResult object
for the task.

• You cannot specify MarkStale as true. The arguments are mutually exclusive.

Example: true
Data Types: logical

DeleteOutputs — Delete task outputs
false or 0 (default) | true or 1

Delete task outputs, specified as a numeric or logical 0 (false) or 1 (true).

Note To delete task outputs with DeleteOutputs, you must specify Clean as true.

Example: true
Data Types: logical

MarkStale — Mark task as outdated
false or 0 (default) | true or 1

 runprocess

3-5

Mark task as outdated, specified as a numeric or logical 0 (false) or 1 (true). When you mark a
task as stale, the results appear outdated in the Process Advisor app.

Note If you specify MarkStale as true, then you cannot specify Clean as true. The arguments are
mutually exclusive.

Example: true
Data Types: logical

ExitInBatchMode — Exit MATLAB when running in batch mode
true or 1 (default) | false or 0

Exit MATLAB when running in batch mode, specified as a numeric or logical 1 (true) or 0 (false).
By default, if you are running MATLAB in batch mode and runprocess finishes running,
runprocess exits MATLAB.

The process exit codes are:

• 0 if the Status of buildResult is PASS
• 1 if the Status of buildResult is ERROR
• 2 if the Status of buildResult is FAIL

Example: false
Data Types: logical

GenerateReport — Automatically generate report at end of runprocess
false or 0 (default) | true or 1

Automatically generate report after runprocess runs tasks, specified as a numeric or logical 1
(true) or 0 (false).
Example: runprocess(GenerateReport = true)
Data Types: logical

ReportFormat — File format for generated report
"pdf" (default) | "html" | "html-file" | "docx"

File format for the generated report, specified as one of these values:

• "pdf" — PDF file
• "html" — HTML report, packaged as a zipped file that contains the HTML file, images, style

sheet, and JavaScript® files of the report
• "html-file" — HTML report
• "docx" — Microsoft® Word document

Note that for the runprocess function to generate a report, you must also specify the argument
GenerateReport as true.
Example: runprocess(GenerateReport = true,ReportFormat = "html-file")

3 Build System API

3-6

ReportPath — Name and path of generated report
"ProcessAdvisorReport" (default) | string array

Name and path of generated report, specified as a string array.

Note that for the runprocess function to generate a report, you must also specify the argument
GenerateReport as true.
Example: runprocess(GenerateReport = true,ReportPath =
fullfile(pwd,"folderName","reportName"))

Data Types: string

RerunFailedTasks — Rerun failed task iterations
false or 0 (default) | true or 1

Rerun failed task iterations, specified as a numeric or logical 0 (false) or 1 (true).
Example: true
Data Types: logical

RerunErroredTasks — Rerun errored task iterations
false or 0 (default) | true or 1

Rerun errored task iterations, specified as a numeric or logical 0 (false) or 1 (true).
Example: true
Data Types: logical

RefreshProcessModel — Automatically refresh before running tasks
true or 1 (default) | false or 0

Automatically refresh before running tasks, specified as a numeric or logical 1 (true) or 0 (false).
By default, runprocess refreshes before running tasks so that the run uses the current state of the
process model and project. If you specify RefreshProcessModel as false, runprocess does not
refresh before running, but the run might not include the latest changes to tasks in the process model
or artifacts in the project.
Example: false
Data Types: logical

ReanalyzeProjectAnalysisIssues — Automatically reanalyze project analysis issues that
have severity level of error
true or 1 (default) | false or 0

Automatically reanalyze project analysis issues that have a severity level of error, specified as a
numeric or logical 1 (true) or 0 (false).

If you are using R2022b Update 1 or later, you can specify ReanalyzeProjectAnalysisIssues as
false to prevent the build system from reanalyzing project analysis issues that have a severity level
of error. This might reduce the execution time for runprocess, but the build system might not
generate the expected task iterations or detect outdated results.

Fix the issues listed in the Project Analysis Issues pane of the Process Advisor app to make sure the
build system can fully analyze the project, generate the expected task iterations, and detect outdated
results.

 runprocess

3-7

Example: false
Data Types: logical

GenerateJUnitForProcess — Generate JUnit-style XML report for process
false or 0 (default) | true or 1

Generate JUnit-style XML report for each task in process, specified as a numeric or logical 0 (false)
or 1 (true).
Example: true
Data Types: logical

EnableTaskLogging — Control command-line outputs from tasks
logical.empty (default) | false or 0 | true or 1

Control command-line outputs from tasks, specified as:

• An empty logical array (logical.empty) — Tasks logging is disabled if the project setting
SuppressOutputWhenInteractive is true and MATLAB is not running in batch mode.

• A numeric or logical 0 (false) — Task logging is disabled.
• A numeric or logical 1 (true) — Task logging is enabled.

When task logging is disabled, tasks no longer output information in the MATLAB Command Window.
Example: false
Data Types: logical

SuppressOutputWhenInteractive — Suppress command-line output from Process Advisor
logical.empty (default) | 1 or true | 0 or false

Suppress command-line output from Process Advisor during interactive MATLAB sessions, specified
as either:

• An empty logical array (logical.empty) — No impact. runprocess follows the Process Advisor
setting Suppress outputs to command window.

• A numeric or logical 1 (true) — Override the Process Advisor setting Suppress outputs to
command window and suppress output to the MATLAB Command Window.

• A numeric or logical 0 (false) — Override the Process Advisor setting Suppress outputs to
command window and show build logs and task execution messages in the MATLAB Command
Window.

Note that this argument has no impact when you run MATLAB in batch mode, which is typically the
case for CI systems.
Example: true
Data Types: logical

Output Arguments
buildResult — Results of run
padv.BuildResult

3 Build System API

3-8

Results of run, returned as a padv.BuildResult object.

The padv.BuildResult object includes:

• The start time and end time of the run
• The status of the run (Pass,Error,Fail)
• Lists of the tasks that the passed, generated errors, were skipped, or failed during the run
• Input arguments to the run

exitCode — Exit code from run
0 | 1 | 2

Exit code from run, returned as a double representing the process error code.

• 0 if the Status of buildResult is Pass
• 1 if the Status of buildResult is Error
• 2 if the Status of buildResult is Fail

Alternative Functionality
App

You can also use the Process Advisor app to run each task or individual task iterations in the process.
To open the Process Advisor app for a project, in the MATLAB Command Window, enter:

processAdvisorWindow

 runprocess

3-9

createProcessTaskID
Generate ID for specific task iteration defined by process model

Syntax
ID = createProcessTaskID(task,artifact)

Description
ID = createProcessTaskID(task,artifact) generates the identifier, ID, for an individual task
iteration defined by the process model. A task iteration is the pairing of a task, task, to a specific
project artifact, artifact.

Examples

Run One Task on One Artifact

Suppose you have a process model with several tasks, but right now you only want to run the task
padv.builtin.task.RunModelStandards on the model AHRS_Voter.slx. Use the function
createProcessTaskID to generate the ID for a specific task iteration, then use the function
runprocess to run only that specific task iteration.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Specify a task that exists in the process model. For this example, specify the built-in task for running
Model Advisor checks, padv.builtin.task.RunModelStandards.

task = padv.builtin.task.RunModelStandards;

Use padv.Artifact to specify the project artifact that you want the task to run on. For this
example, the artifact type is sl_model_file because the artifact is a Simulink model and the
address is the path to AHRS_Voter.slx, relative to the project root.

artifactType = "sl_model_file";
address = fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx");
artifact = padv.Artifact(artifactType,address);

Use the task instance and artifact to generate the ID for the specific task iteration.

runModelStandards_for_AHRS_Voter = createProcessTaskID(task,artifact)

runModelStandards_for_AHRS_Voter =

"padv.builtin.task.RunModelStandards|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx"

Use the function runprocess to run the task iteration.

runprocess(Tasks = runModelStandards_for_AHRS_Voter)

3 Build System API

3-10

When you specify the Tasks value as the ID for a single task iteration, the function runprocess runs
only the specified task iteration. For this example, runprocess runs only the task iteration
associated with the task padv.builtin.task.RunModelStandards and the artifact
AHRS_Voter.slx.

Note Alternatively, instead of creating and then running the task iterations, you can directly specify
the Task and FilterArtifact arguments of the runprocess function to run the task on a specific
artifact:

runprocess(...
Tasks = "padv.builtin.task.RunModelStandards",...
FilterArtifact = fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx"))

But note that you can only run the tasks if the tasks are defined in the process model and the artifacts
exist in the project.

Input Arguments
task — Task name or subclass of padv.Task
string | character vector | padv.Task object

Either:

• Name of task, specified as a string or character vector. The name of a task is stored in the Name
property of the task. For example, "name_of_my_custom_task".

• Subclass of padv.Task, specified as a padv.Task object. Built-in tasks are subclasses of
padv.Task. For example, you can specify the padv.Task object
padv.builtin.task.RunModelStandards for the task argument.

Example: "name_of_my_custom_task"
Example: "padv.builtin.task.RunModelStandards"
Example: padv.builtin.task.RunModelStandards
Data Types: char | string

artifact — File in project
padv.Artifact object

File in project, specified as a padv.Artifact object.
Example: padv.Artifact("project","ProcessAdvisorExample.prj")
Example: padv.Artifact("sl_model_file", "02_Models/AHRS_Voter/specification/
AHRS_Voter.slx")

Output Arguments
ID — Identifier for task iteration defined by process model
string

Identifier for task iteration defined by the process model, returned as a string.

 createProcessTaskID

3-11

IDs take the form: "taskNameOrObject|fileType|relativePath", where relativePath is the
path relative to the project root.

Example IDs:

• "myCustomProjectTask|project|ProcessAdvisorExample.prj"
• "padv.builtin.task.RunModelStandards|sl_model_file|02_Models/AHRS_Voter/

specification/AHRS_Voter.slx"
• "padv.builtin.task.RunTestsPerTestCase|sl_test_case|ced877ff-

cfb8-4fa8-9bbf-aaa29b1d926b"

Alternative Functionality
App

You can also use the Process Advisor app to run individual task iterations in the process. To open the
Process Advisor app for a project, in the MATLAB Command Window, enter:

processAdvisorWindow

3 Build System API

3-12

generateProcessTasks
Get list of IDs for task iterations in MBD pipeline

Syntax
IDs = generateProcessTasks()
IDs = generateProcessTasks(Name=Value)

Description
IDs = generateProcessTasks() returns identifiers, IDs, for each of the task iterations in the
model-based design (MBD) pipeline.

By default, generateProcessTasks returns an ID for each combination of tasks and associated
project artifacts in the MBD pipeline.

IDs = generateProcessTasks(Name=Value) filters the list of IDs using one or more
Name=Value arguments.

Examples

List IDs for Each Task Iteration in MBD Pipeline

Suppose you have a process model that adds several tasks to the process. Use the function
generateProcessTasks to list the IDs for each task iteration in the MBD pipeline.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

List the IDs for each task iteration in the MBD pipeline.

IDs = generateProcessTasks()

Run Each Task Associated with an Artifact

Suppose you have a process model that adds several tasks to the process, but right now you only
want to run the tasks associated with one specific artifact. You can use the function
generateProcessTasks, but filter the list of IDs to only include task iterations associated with a
specific model in the project, AHRS_Voter.slx.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Use padv.Artifact to specify the project artifact that you want the task to run on. For this
example, the artifact type is sl_model_file because the artifact is a Simulink model and the
address is the path to AHRS_Voter.slx, relative to the project root.

 generateProcessTasks

3-13

artifactType = "sl_model_file";
address = fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx");
artifact = padv.Artifact(artifactType,address);

Get a list of the IDs for the task iterations in the MBD pipeline, but filter the list to include only task
iterations associated with the artifact AHRS_Voter.slx.

IDs_AHRS_Voter = generateProcessTasks(FilterArtifact=artifact);

Use the function runprocess to run only the task iterations associated with the artifact
AHRS_Voter.slx.

runprocess(Tasks=IDs_AHRS_Voter)

When you specify the Tasks value as a list of IDs for task iterations, the function runprocess runs
only the specified task iterations. For this example, runprocess runs only the task iterations
associated with the artifact AHRS_Voter.slx.

Note Alternatively, instead of generating and then running the task iterations, you can directly
specify the FilterArtifact argument of the runprocess function to run the tasks associated with
the artifact:

runprocess(FilterArtifact = fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx"))

But note that you can only run the tasks if the tasks are defined in the process model and the artifacts
exist in the project.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: generateProcessTasks(Tasks =
"padv.builtin.task.GenerateSimulinkWebView")

FilterArtifact — Artifacts that you want to run tasks for
string.empty (default) | string | padv.Artifact object | array of padv.Artifact objects

Artifact or artifacts that you want to generate IDs for, specified as either the full path to an artifact,
relative path to an artifact, a padv.Artifact object that represents an artifact, or an array of
padv.Artifact objects.
Example: fullfile("C:\","User","projectA","myModel.slx")
Example: fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")
Example:
padv.Artifact("sl_model_file",fullfile("02_Models","AHRS_Voter","specificatio
n","AHRS_Voter.slx"))

Data Types: string

3 Build System API

3-14

Process — Name of process that you want to generate IDs for
padv.ProcessModel.DefaultProcessId (default) | character vector | string

Name of process that you want to generate IDs for, specified by a character vector or string.
Example: "CIPipeline"
Data Types: char | string

Subprocesses — Names of subprocesses that you want to generate IDs for
character vector | cell array of character vectors | string | string array

Names of subprocesses that you want to generate IDs for, specified as a character vector, cell array of
character vectors, string, or string array. The subprocess name is defined by the Name property of the
subprocess.
Example: "SubprocessA"
Example: ["SubprocessA",SubprocessB"]
Data Types: char | string

Tasks — Names of tasks that you want to generate IDs for
character vector | cell array of character vectors | string | string array

Names of tasks that you want to generate IDs for, specified as a character vector, cell array of
character vectors, string, or string array. The task name is defined by the Name property of the task.
Example: "padv.builtin.task.GenerateSimulinkWebView"
Example: ["padv.builtin.task.GenerateSimulinkWebView",...
"padv.builtin.task.RunModelStandards"]

Data Types: char | string

Output Arguments
IDs — Identifiers for task iterations defined by process model
string

Identifiers for task iterations in the MBD pipeline, returned as a string.

IDs take the form: "taskNameOrObject|fileType|relativePath", where relativePath is the
path relative to the project root.

Example IDs:

• "myCustomProjectTask|project|ProcessAdvisorExample.prj"
• "padv.builtin.task.RunModelStandards|sl_model_file|02_Models/AHRS_Voter/

specification/AHRS_Voter.slx"
• "padv.builtin.task.RunTestsPerTestCase|sl_test_case|ced877ff-

cfb8-4fa8-9bbf-aaa29b1d926b"

 generateProcessTasks

3-15

Alternative Functionality
App

You can also use the Process Advisor app to run individual task iterations in the process or to view
task iterations for a specific model.

• To open the Process Advisor app for a project, in the MATLAB Command Window, enter:

processAdvisorWindow
• To open the Process Advisor app for a specific model, provide the name of the model, modelName,

to the function processadvisor:

processadvisor(modelName)

3 Build System API

3-16

getProcessTaskResults
Get available task results and result details for task iterations in MBD pipeline

Syntax
[IDsWithTaskResults,taskResults,taskResultsOutdated] =
getProcessTaskResults()
[IDsWithTaskResults,taskResults,taskResultsOutdated] = getProcessTaskResults(
Name=Value)

Description
[IDsWithTaskResults,taskResults,taskResultsOutdated] =
getProcessTaskResults() returns available task results and result details for the task iterations
in the MBD pipeline. The function returns the identifiers for task iterations that have task results,
IDsWithTaskResults, the current task results, taskResults, and a logical value that indicates if
the task results are outdated, taskResultsOutdated.

If you do not have task results, use the function runprocess to run tasks and generate results. The
function getProcessTaskResults only returns information related to task iterations that are
defined in the process model. If you have task results from a task iteration that is not in the process
model, the function does not return information related to those task results.

[IDsWithTaskResults,taskResults,taskResultsOutdated] = getProcessTaskResults(
Name=Value) specifies options using one or more name-value arguments.

Examples

Get Output Artifacts from Task Results

Get the available task results for a task iteration and use the result details to find information about
the output artifacts of the task iteration.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

List the IDs for each task iteration in the MBD pipeline.

IDs = generateProcessTasks();

Run the first task iteration in the list.

runprocess(Tasks=IDs(1))

For this example, the build system runs the task
padv.builtin.task.GenerateSimulinkWebView for the model AHRS_Voter.slx.

Get the available task results and result details.

 getProcessTaskResults

3-17

[IDsWithResults,results,outdated] = getProcessTaskResults()

IDsWithResults =

 "padv.builtin.task.GenerateSimulinkWebView|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx"

results =

 TaskResult with properties:

 Status: Pass
 OutputArtifacts: [1×1 padv.Artifact]
 Details: [1×1 struct]
 ResultValues: [1×1 struct]

outdated =

 logical

 0

Get the output artifacts from the result. For this example, the result is a Simulink Web View for the
model AHRS_Voter.slx.

webView = results.OutputArtifacts

webView =

 Artifact with properties:

 Type: "padv_output_file"
 Parent: [0×0 padv.Artifact]
 ArtifactAddress: [1×1 padv.util.ArtifactAddress]
 Alias: ""

Get Output Artifacts from Task Results for Specific Model

Get the available task results for a specific model.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Check modeling standards for the model AHRS_Voter.slx by using the built-in task
padv.builtin.task.RunModelStandards. The task uses Model Advisor to run checks on the
model.

runprocess(...
Tasks = "padv.builtin.task.RunModelStandards",...
FilterArtifact = fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx"));

Get the task results and result details.

3 Build System API

3-18

[IDsWithResults,results,outdated] = getProcessTaskResults(...
Tasks = "padv.builtin.task.RunModelStandards",...
FilterArtifact = fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx"))

IDsWithResults =

 "padv.builtin.task.RunModelStandards|sl_model_file|ProcessAdvisorExample|02_Models/AHRS_Voter/specification/AHRS_Voter.slx"

results =

 TaskResult with properties:

 Status: Pass
 OutputArtifacts: [1×1 padv.Artifact]
 Details: [1×1 struct]
 ResultValues: [1×1 struct]

outdated =

 logical

 0

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: [~,results,~] = getProcessTaskResults(Tasks="maTask",
FilterArtifact=fullfile("models","myModel.slx"));

Tasks — Names of tasks that you want to run
character vector | cell array of character vectors | string | string array

Names of tasks that you want to run, specified as a character vector, cell array of character vectors,
string, or string array. The task name is defined by the Name property of the task.

Alternatively, you can specify the task iteration IDs for individual task iterations that you want to run.
See "generateProcessTasks" and "createProcessTaskID" in this PDF for information.

Note You can only run tasks that are defined in the process model.

Example: "padv.builtin.task.GenerateSimulinkWebView"
Example: ["padv.builtin.task.GenerateSimulinkWebView",...
"padv.builtin.task.RunModelStandards"]

Data Types: char | string

Process — Name of process that you want to run
padv.ProcessModel.DefaultProcessId (default) | character vector | string

 getProcessTaskResults

3-19

Name of process that you want to run, specified by a character vector or string.
Example: "CIPipeline"
Data Types: char | string

Subprocesses — Names of subprocesses that you want to run
character vector | cell array of character vectors | string | string array

Names of subprocesses that you want to run, specified as a character vector, cell array of character
vectors, string, or string array. The subprocess name is defined by the Name property of the
subprocess.
Example: "SubprocessA"
Example: ["SubprocessA",SubprocessB"]
Data Types: char | string

FilterArtifact — Artifacts that you want to run tasks for
string.empty (default) | string | padv.Artifact object | array of padv.Artifact objects

Artifact or artifacts that you want to run tasks for, specified as either the full path to an artifact,
relative path to an artifact, a padv.Artifact object that represents an artifact, or an array of
padv.Artifact objects.
Example: fullfile("C:\","User","projectA","myModel.slx")
Example: fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")
Example:
padv.Artifact("sl_model_file",fullfile("02_Models","AHRS_Voter","specificatio
n","AHRS_Voter.slx"))

Data Types: string

Output Arguments
IDsWithTaskResults — Identifiers for task iterations that have task results and are
defined in process model
string | string array

Identifiers for task iterations that have task results and are defined in the process model, returned as
a string or string array.

• If you do not have task results for task iterations in your process model, IDsWithTaskResults
returns an empty array, []. You can use the function runprocess to run tasks and generate
results.

• If you have task results for task iterations that are not in your process model,
IDsWithTaskResults returns an empty array, [].

• If you have task results for task iterations that are in your process model, IDsWithTaskResults
returns the IDs for the task iterations that have task results.

IDs take the form: "taskNameOrObject|fileType|relativePath", where relativePath is the
path relative to the project root.

Example IDs:

3 Build System API

3-20

• "myCustomProjectTask|project|ProcessAdvisorExample.prj"
• "padv.builtin.task.RunModelStandards|sl_model_file|02_Models/AHRS_Voter/

specification/AHRS_Voter.slx"
• "padv.builtin.task.RunTestsPerTestCase|sl_test_case|ced877ff-

cfb8-4fa8-9bbf-aaa29b1d926b"

taskResults — Results for task iterations
padv.TaskResult | padv.TaskResult array

Results for task iterations, returned as a padv.TaskResult or padv.TaskResult array.

• If you do not have task results for task iterations in your process model, taskResults returns an
empty array, [].

• If you have task results for task iterations that are not in your process model, taskResults
returns an empty array, [].

• If you have task results for task iterations that are in your process model, taskResults returns a
padv.TaskResult or padv.TaskResult array.

padv.TaskResult objects contain properties for the result status, output artifacts, details, and
result values for the number of passing, warning, and failing results for task iterations.

taskResultsOutdated — Whether task results are outdated or up-to-date
logical | logical array

Status of task results, returned as a logical value or logical array. Values of 1 indicate that the results
for the task iteration are outdated and might not reflect the current state of the project or task.
Values of 0 indicate that the results for the task iteration are up-to-date. The result is an empty array,
[], when there are not task results.

 getProcessTaskResults

3-21

padv.BuildResult
Result from build system build

Description
Use the build result, padv.BuildResult, to find the properties of the build system build, including a
list of the tasks that the build system ran and the settings the build system used.

Creation

Syntax
Description

buildResultObj = padv.BuildResult() stores the results from a build system build.

Properties
StartTime — Start time of build
datetime

Start time of build, returned as datetime.
Example: 09-Aug-2022 14:32:05
Data Types: datetime

EndTime — End time of build
datetime

End time of build, returned as datetime.
Example: 09-Aug-2022 14:32:37
Data Types: datetime

Status — Overall status for build
Pass (default) | Fail | Error

Overall status for build, returned as the padv.TaskStatus enumeration value:

• Error if any task iteration in the build returns an error.
• Fail if no task iterations in the build return an error, but at least one task iteration fails.
• Pass if no task iterations were run, or if no task iterations in the build return an error or fail.

Example: Pass

ResultValues — Task iteration result values
[1×1 struct] (default)

3 Build System API

3-22

Task iteration result values, returned as a structure array with fields:

• Pass
• Warn
• Fail

For example, if the build runs one task iteration and the task iteration returns one passing result and
five warning results, the structure array contains:

 struct with fields:

 Pass: 1
 Warn: 5
 Fail: 0

Data Types: struct

PassTasks — IDs for task iterations that passed during the build
cell array

IDs for task iterations that passed during the build, returned as a cell array.

If the build system runs one task iteration and the task iteration passes, PassTasks returns a one-
dimensional cell array. For example, if the build system only ran the task
padv.builtin.task.GenerateCode on the model AHRS_Voter.slx and the task iteration
passed, PassTasks returns:

{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx'}

If multiple task iterations pass, PassTasks returns one cell for each task iteration that passed. For
example:

{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx' }
{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/Actuator_Control/specification/Actuator_Control.slx' }
{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/Flight_Control/specification/Flight_Control.slx' }
{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/InnerLoop_Control/specification/InnerLoop_Control.slx'}
{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/OuterLoop_Control/specification/OuterLoop_Control.slx'}

Data Types: cell

ErrorTasks — IDs for task iterations that returned an error during the build
cell array

IDs for task iterations that returned an error during the build, returned as a cell array.

If the build system runs one task iteration and the task iteration returns an error, ErrorTasks
returns a one-dimensional cell array. For example, if the build system tried to run a custom task,
customTask, on the model AHRS_Voter.slx, but the task iteration returned an error, ErrorTasks
returns:

{'customTask|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx'}

If multiple task iterations error, ErrorTasks returns one cell for each task iteration that returned an
error. For example:

{'customTask|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx' }
{'customTask|sl_model_file|02_Models/Actuator_Control/specification/Actuator_Control.slx' }

 padv.BuildResult

3-23

{'customTask|sl_model_file|02_Models/Flight_Control/specification/Flight_Control.slx' }
{'customTask|sl_model_file|02_Models/InnerLoop_Control/specification/InnerLoop_Control.slx'}
{'customTask|sl_model_file|02_Models/OuterLoop_Control/specification/OuterLoop_Control.slx'}

Data Types: cell

SkippedTasks — IDs for task iterations that the build system skipped
cell array

IDs for task iterations that the build system skipped, returned as a cell array. The build system skips
task iterations that already have up-to-date results, unless you specify Force as true when you call
the function runprocess.

If the build system skips one task iteration, SkippedTasks returns a one-dimensional cell array. For
example, if you instructed the build system to run the task padv.builtin.task.GenerateCode on
the model AHRS_Voter.slx, but the task iteration already had up-to-date results, SkippedTasks
returns:

{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx'}

If the build system skips multiple task iterations, SkippedTasks returns one cell for each task
iteration that the build system skipped. For example:

{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx' }
{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/Actuator_Control/specification/Actuator_Control.slx' }
{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/Flight_Control/specification/Flight_Control.slx' }
{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/InnerLoop_Control/specification/InnerLoop_Control.slx'}
{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/OuterLoop_Control/specification/OuterLoop_Control.slx'}

Data Types: cell

FailedTasks — IDs for task iterations that failed during the build
cell array

IDs for task iterations that failed during the build, returned as a cell array.

If the build system runs only one task iteration and the task iteration fails, FailedTasks returns a
one-dimensional cell array. For example, if the build system ran the task
padv.builtin.task.GenerateCode on the model AHRS_Voter.slx and the task iteration failed,
FailedTasks returns:

{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx'}

If multiple task iterations fail, FailedTasks returns one cell for each task iteration that failed. For
example:

{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx' }
{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/Actuator_Control/specification/Actuator_Control.slx' }
{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/Flight_Control/specification/Flight_Control.slx' }
{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/InnerLoop_Control/specification/InnerLoop_Control.slx'}
{'padv.builtin.task.GenerateCode|sl_model_file|02_Models/OuterLoop_Control/specification/OuterLoop_Control.slx'}

Data Types: cell

InputArgs — Input arguments that defined how the build system ran the build
[1×1 struct] (default) | structure array

3 Build System API

3-24

Input arguments that defined how the build system ran the build, returned as a structure array with
fields:

• TasksToBuild — List of task iteration IDs that you want the build system to run
• Isolation — Setting to include or ignore task dependencies
• Force — Setting to skip or run up-to-date task iterations
• RerunFailedTasks — Setting to ignore or rerun failed task iterations
• RerunErroredTasks — Setting to ignore or rerun task iterations that returned an error

For example, the InputArgs for a build result could return:

 struct with fields:

 TasksToBuild: [1×5 string]
 Isolation: 0
 Force: 0
 RerunFailedTasks: 0
 RerunErroredTasks: 0

For more information, see the function runprocess.
Data Types: struct

Examples

Get List of Passed Task Iterations and Build Settings

Open a project, run a build, and use the build result, padv.BuildResult, to get a list of the passed
task iterations and the settings that the build system used when running the build.

Open the Process Advisor example project, which contains an example process model.

processAdvisorExampleStart

Generate a list of the tasks defined by the process model.

tasks = generateProcessTasks;

Run the first five task iterations in tasks and specify Force as true.

buildResult = runprocess(Force=true,Tasks=tasks(1:5))

Use the build result, buildResult, to get a list of the task iterations that passed.

passed = buildResult.PassTasks'

passed =

 5×1 cell array

 {'padv.builtin.task.GenerateSimulinkWebView|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx' }
 {'padv.builtin.task.GenerateSimulinkWebView|sl_model_file|02_Models/Actuator_Control/specification/Actuator_Control.slx' }
 {'padv.builtin.task.GenerateSimulinkWebView|sl_model_file|02_Models/Flight_Control/specification/Flight_Control.slx' }
 {'padv.builtin.task.GenerateSimulinkWebView|sl_model_file|02_Models/InnerLoop_Control/specification/InnerLoop_Control.slx'}
 {'padv.builtin.task.GenerateSimulinkWebView|sl_model_file|02_Models/OuterLoop_Control/specification/OuterLoop_Control.slx'}

 padv.BuildResult

3-25

When you used the function runprocess, you specified Force as true. You can see that information
in the InputArgs property of the build result, buildResult.

runprocessInputs = buildResult.InputArgs

runprocessInputs =

 struct with fields:

 TasksToBuild: ["padv.builtin.task.GenerateSimulinkWebView|sl_model_file|02_Models/AHRS_Voter/specification/AHRS_Voter.slx" …]
 Isolation: 0
 Force: 1
 RerunFailedTasks: 0
 RerunErroredTasks: 0

The build result shows that the Force setting was 1 (true) when the build system ran.

3 Build System API

3-26

padv.Preferences
(To be removed) Specify settings for build system

Description
There are several settings that you can use to customize the behavior of the build system. These
behaviors impact how the Process Advisor app and runprocess function run tasks. For example, you
can use settings to use incremental builds, enable model caching, and customize other behaviors. The
build system saves these settings in padv.Preferences. You can use the preferences,
padv.Preferences, to specify settings for the Process Advisor app and settings for how the
runprocess function runs builds.

Note The padv.Preferences class will be removed in a future release. Use the new classes
padv.ProjectSettings and padv.UserSettings instead. The new classes allow you to
programmatically control the settings for incremental builds, build system logging, and other
behaviors, without needing to create a project startup script to persist run-time settings.

For information, see the "Version History" for padv.Preferences below.

Creation

Syntax
Description

P = padv.Preferences() gets the handle to the global preferences object, P. There is only one set
of preference properties.

The padv.Preferences class is a handle class.

Properties
Project Settings

These settings are stored in the project and are shared with everyone using the project.

IncrementalBuild — Automatically detect changes and mark task results as outdated
1 (true) | 0 (false)

Automatically detect changes and mark task results as outdated, specified as a numeric or logical 1
(true) or 0 (false).

When IncrementalBuild is true and you make a change to an artifact in your project, the build
system marks any related task results as outdated.

This property is equivalent to the Incremental build setting in the Process Advisor Settings dialog
box.

 padv.Preferences

3-27

Example: true
Data Types: logical

EnableModelCaching — Allow build system to cache models during build
0 (false) (default) | 1 (true)

Allow the build system to cache models during a build, specified as a numeric or logical 1 (true) or 0
(false).

If you specify the property EnableModelCaching as true, you allow the build system to cache
models instead of reloading the same models multiple times within a build. For information, see
"Cache Models Used During Build" in the User's Guide PDF.

This property is equivalent to the Enable model caching setting in the Process Advisor Settings
dialog box.
Example: true
Data Types: logical

MaxNumModelsInCache — Maximum number of models in cache
1 (default) | positive value

Maximum number of models in the model cache, specified as a positive value.
Example: 2

MaxNumTestResultsInCache — Maximum number of test results in cache
20 (default) | positive value

Maximum number of test results in the cache, specified as a positive value.
Example: 30

SuppressOutputWhenInteractive — Suppress command-line output from Process Advisor
0 (false) (default) | 1 (true)

Suppress command-line output from Process Advisor during interactive MATLAB sessions, specified
as a numeric or logical 1 (true) or 0 (false).

You can use this setting to suppress command-line outputs from the build system, such as the build
log and task execution messages from Process Advisor and the runprocess function.

Note that the build system automatically ignores this setting when you run MATLAB in batch mode,
which is typically the case for CI systems.

This property is equivalent to the Suppress outputs to command window setting in the Process
Advisor Settings dialog box.
Example: true
Data Types: logical

Run-Time Settings

DetectDuplicateOutputs — Generate error message when multiple tasks attempt to write
to same output file
1 (true) (default) | 0 (false)

3 Build System API

3-28

Setting that controls whether the build system generates an error message when multiple tasks
attempt to write to the same output file, specified as a numeric or logical 1 (true) or 0 (false).

By default, the build system generates an error if multiple tasks attempt to write to the same output
file.

This property is equivalent to the Detect duplicate outputs setting in the Process Advisor Settings
dialog box.
Example: false
Data Types: logical

GarbageCollectTaskOutputs — Setting for automatically cleaning task results for tasks
and artifacts that do not match current process model or project
true or 1 (default) | false or 0

Setting for automatically cleaning task results for tasks and artifacts that do not match current
process model or project, specified as a numeric or logical 1 (true) or 0 (false).

By default, when you use the build system, the build system cleans task results that are no longer
relevant for the current process model or project. For example, if you had task results from a specific
task and then you remove that task from the process model, the build system automatically deletes
the task results associated with the task. If you had task results associated with a specific project
artifact and then you removed that artifact from the project, the build system automatically deletes
the task results associated with the artifact. Note that the build system does not delete generated
artifacts like generated code.

If you specify GarbageCollectTaskOutputs as false, the build system does not automatically
clean task results associated with tasks and artifacts that are not in the current process model or
project.

This property is equivalent to the Garbage collect task outputs setting in the Process Advisor
Settings dialog box.
Example: false
Data Types: logical

FilteredDigitalThreadMessages — List of filtered digital thread messages
[13×1 string] (default) | string

List of filtered digital thread messages, specified as a string.

By default, Process Advisor and the build system do not display certain messages from the digital
thread. You can add or remove messages in the list, or reset the list of filtered messages, by using the
padv.Preferences object functions. For information, see the Object Functions for
padv.Preferences.
Data Types: string

ShowDetailedErrorMessages — Setting to show more information in error messages
false or 0 (default) | true or 1

Setting to show more information in error messages, specified as a numeric or logical 0 (false) or 1
(true).

 padv.Preferences

3-29

By default, error messages from the build system are not verbose.

If you specify ShowDetailedErrorMessages as true, the build system shows full stack traces in
error messages. You might want to see full stack traces when you are debugging a process model.

This property is equivalent to the Show detailed error messages setting in the Process Advisor
Settings dialog box.
Example: true
Data Types: logical

TrackProcessModel — Setting for tracking changes to process model
true or 1 (default) | false or 0

Setting for tracking changes to process model, specified as a numeric or logical 1 (true) or 0
(false).

By default, if you make a change to the process model file, the build system marks each task status
and task result as outdated because the tasks in the updated process model might not match the
tasks that generated the task results from the previous version of the process model. For example, if
you ran the built-in task padv.builtin.task.RunModelStandards with the default Model Advisor
configuration, updated the process model to specify a different Model Advisor configuration file for
the task, and then ran the task again, the task results are now outdated because they are the task
results from the default configuration.

If you specify TrackProcessModel as false and make a change to the process model, the build
system will not mark the task statuses and task results as outdated.

This property is equivalent to the Add process model as dependency setting in the Process Advisor
Settings dialog box.
Example: false
Data Types: logical

Object Functions
• addFilteredDigitalThreadMessages(obj, IssueId) adds the message, specified by the

issue ID IssueId, to the list of filtered messages in the property
FilteredDigitalThreadMessages.

To get a list of issue messages and issue IDs, use the function getArtifactIssues:

metric_engine = metric.Engine();
issues = getArtifactIssues(metric_engine)
issuesMessages = issues.IssueMessage
issueIDs = issues.IssueId

Suppose that you want to filter out the issue message associated with the issue ID
"alm:artifact_service:CannotResolveElement". You can use the function
addFilteredDigitalThreadMessages to add the issue message to the list of filtered
messages:

p = padv.Preferences;
addFilteredDigitalThreadMessages(p,...
"alm:artifact_service:CannotResolveElement")

3 Build System API

3-30

• removeFilteredDigitalThreadMessages(obj, IssueId) removes the message, specified
by messageID, to the list of filtered messages in the property
FilteredDigitalThreadMessages.

For example:

p = padv.Preferences;
removeFilteredDigitalThreadMessages(p,...
"alm:simulink_handlers:ModelCallbacksDeactivated")

• resetFilteredDigitalThreadMessages(obj) resets the list of filtered messages in the
property FilteredDigitalThreadMessages.

For example:

p = padv.Preferences;
resetFilteredDigitalThreadMessages(p)

Examples

Specify Preferences for Builds

Use padv.Preferences to specify preferences for the Process Advisor app and build system.

Create a padv.Preferences object.

PREF = padv.Preferences

Specify IncrementalBuild as 0.

PREF.IncrementalBuild = 0;

Now, when you run tasks, incremental builds are disabled and the build system forces tasks to run,
even if the tasks have up to date results.

Alternative Functionality
App

In Process Advisor, in the toolstrip, click Settings to access and change the settings for the build
system.

 padv.Preferences

3-31

Version History
R2022b: padv.Preferences class will be removed in a future release
Warns starting in R2022b

The class padv.Preferences will be removed in a future release. Update your code to replace
instances of padv.Preferences with either padv.UserSettings.get() or
padv.ProjectSettings.get(), depending on which property you need to access.

padv.Preferences Property Update
DetectDuplicateOutputs Replace instances of padv.Preferences with

padv.UserSettings.get().GarbageCollectTaskOutputs
ShowDetailedErrorMessages
TrackProcessModel
FilteredDigitalThreadMessages Replace instances of padv.Preferences with

padv.ProjectSettings.get().IncrementalBuild
EnableModelCaching
MaxNumModelsInCache
MaxNumTestResultsInCache
SuppressOutputWhenInteractive

For example:

Functionality Use This Instead
% changing run-time setting
p1 = padv.Preferences;
p1.DetectDuplicateOutputs = false;

p1 = padv.UserSettings.get();
p1.DetectDuplicateOutputs = false;

% changing project setting
p1 = padv.Preferences;
p1.IncrementalBuild = false;

p1 = padv.ProjectSettings.get();
p1.IncrementalBuild = false;

3 Build System API

3-32

padv.ProjectSettings Class
Namespace: padv

Build system settings for project

Description
The padv.ProjectSettings class is a handle class.

Creation

Syntax
padv.ProjectSettings

Description

padv.ProjectSettings is a handle class that you can use to customize the behavior of the build
system. These behaviors impact how the Process Advisor app and runprocess function run tasks.
For example, you can use the project settings to use incremental builds, enable model caching, and
customize other behaviors.

Project settings are persistent, are stored in the project, and are shared with everyone using the
project. There is only one set of project settings for a project. To get the active project settings object,
use the get method.

To specify settings that apply only to your machine, use padv.UserSettings.

Properties
IncrementalBuild — Automatically detect changes and mark task results as outdated
1 (true) | 0 (false)

Automatically detect changes and mark task results as outdated, specified as a numeric or logical 1
(true) or 0 (false).

When IncrementalBuild is true and you make a change to an artifact in your project, the build
system marks any related task results as outdated.

This property is equivalent to the Incremental build setting in the Process Advisor Settings dialog
box.
Example: true
Attributes:

GetAccess public
SetAccess public

Data Types: logical

 padv.ProjectSettings Class

3-33

EnableModelCaching — Allow build system to cache models during build
0 (false) | 1 (true)

Allow the build system to cache models during a build, specified as a numeric or logical 1 (true) or 0
(false).

If you specify the property EnableModelCaching as true, you allow the build system to cache
models instead of reloading the same models multiple times within a build. For information, see
"Cache Models Used During Build" in the User's Guide PDF.

This property is equivalent to the Enable model caching setting in the Process Advisor Settings
dialog box.
Example: true

Attributes:

GetAccess public
SetAccess public

Data Types: logical

MaxNumModelsInCache — Maximum number of models in cache
1 (default) | positive value

Maximum number of models in the model cache, specified as a positive value.

For information about caching, see "Cache Models and Other Artifacts Used During Build" in the
User's Guide PDF.
Example: 2

Attributes:

GetAccess public
SetAccess public

MaxNumTestResultsInCache — Maximum number of test results in cache
20 (default) | positive value

Maximum number of test results in the cache, specified as a positive value.

For information about caching, see "Cache Models and Other Artifacts Used During Build" in the
User's Guide PDF.
Example: 30

Attributes:

GetAccess public
SetAccess public

SuppressOutputWhenInteractive — Suppress command-line output from Process Advisor
0 (false) (default) | 1 (true)

Suppress command-line output from Process Advisor during interactive MATLAB sessions, specified
as a numeric or logical 1 (true) or 0 (false).

3 Build System API

3-34

You can use this setting to suppress command-line outputs from the build system, such as the build
log and task execution messages from Process Advisor and the runprocess function.

Note that the build system automatically ignores this setting when you run MATLAB in batch mode,
which is typically the case for CI systems.

This property is equivalent to the Suppress outputs to command window setting in the Process
Advisor Settings dialog box. If you want to override this setting when you use the function
runprocess, you can use the runprocess argument SuppressOutputWhenInteractive.
Example: true

Attributes:

GetAccess public
SetAccess public

Data Types: logical

ShowFileExtension — Show file extensions for task iteration artifacts
0 (false) | 1 (true)

Show file extensions for task iteration artifacts, specified as a numeric or logical 1 (true) or 0
(false).

By default, queries strip file extensions from the Alias property of each task iteration artifact. The
Alias property controls the display name for the artifact in the Tasks column in Process Advisor.

To show file extensions for all task iteration artifacts in the Tasks column, specify this setting as
true. To keep file extensions in the results for a specific query, specify the query property
ShowFileExtension as true.

This property is equivalent to the Show file extensions setting in the Process Advisor Settings
dialog box.
Example: true

Attributes:

GetAccess public
SetAccess public

Data Types: logical

FilteredDigitalThreadMessages — List of filtered digital thread messages
[13×1 string] (default) | string

List of filtered digital thread messages, specified as a string.

By default, Process Advisor and the build system do not display certain messages from the digital
thread. You can add or remove messages in the list, or reset the list of filtered messages, by using the
methods for padv.ProjectSettings. For information, see the "Methods" section below.

Attributes:

GetAccess public
SetAccess public

 padv.ProjectSettings Class

3-35

Data Types: string

Methods
Public Methods

Get or Reset Settings for Project

Method Description
get Get build system settings for current project

PREF = padv.ProjectSettings.get()

resetToDefaultValues Reset build system settings for current project

PREF.resetToDefaultValues()

To see the changes, use the get method to get
the latest setting values.

PREF = padv.ProjectSettings.get()

Filter Messages

Method Description
addFilteredDigitalThreadMessages Add message to list of filtered messages

ps = padv.ProjectSettings.get();
ps.addFilteredDigitalThreadMessages(...
"alm:artifact_service:CannotResolveElement");

To get a list of issue messages and issue IDs, use the
function getArtifactIssues:

metric_engine = metric.Engine();
issues = getArtifactIssues(metric_engine)
issuesMessages = issues.IssueMessage
issueIDs = issues.IssueId

removeFilteredDigitalThreadMessag
es

Remove message from list of filtered messages

ps = padv.ProjectSettings.get();
ps.removeFilteredDigitalThreadMessages(...
"alm:simulink_handlers:ModelCallbacksDeactivated");

resetFilteredDigitalThreadMessage
s

Reset list of filtered messages

ps = padv.ProjectSettings.get();
ps.resetFilteredDigitalThreadMessages();

Examples

Get Build System Settings for Project

Get for build system settings for the currently open project.

3 Build System API

3-36

PREF = padv.ProjectSettings.get()

Alternative Functionality
App

In Process Advisor, in the toolstrip, click Settings to access and change the settings for the build
system.

 padv.ProjectSettings Class

3-37

padv.UserSettings Class
Namespace: padv

Build system settings for user

Description
The padv.UserSettings class is a handle class.

Creation

Syntax
padv.UserSettings

Description

padv.UserSettings is a handle class that you can use to customize the behavior of the build
system on your machine. These behaviors impact how the Process Advisor app and runprocess
function run tasks on your machine. For example, you can use the user settings to show detailed error
messages, remove the process model as a dependency, and customize other behaviors.

User settings are persistent and do not reset when you restart MATLAB or call clear classes.
There is only one set of user settings. To get the active user settings object, use the get method.

To specify settings that apply to everyone that uses your project, use padv.ProjectSettings.

Properties
DetectDuplicateOutputs — Generate error message when multiple tasks attempt to write
to same output file
1 (true) (default) | 0 (false)

Setting that controls whether the build system generates an error message when multiple tasks
attempt to write to the same output file, specified as a numeric or logical 1 (true) or 0 (false).

By default, the build system generates an error if multiple tasks attempt to write to the same output
file.

This property is equivalent to the Detect duplicate outputs setting in the Process Advisor Settings
dialog box.
Example: false
Data Types: logical

GarbageCollectTaskOutputs — Setting for automatically cleaning task results for tasks
and artifacts that do not match current process model or project
true or 1 (default) | false or 0

3 Build System API

3-38

Setting for automatically cleaning task results for tasks and artifacts that do not match current
process model or project, specified as a numeric or logical 1 (true) or 0 (false).

By default, when you use the build system, the build system cleans task results that are no longer
relevant for the current process model or project. For example, if you had task results from a specific
task and then you remove that task from the process model, the build system automatically deletes
the task results associated with the task. If you had task results associated with a specific project
artifact and then you removed that artifact from the project, the build system automatically deletes
the task results associated with the artifact. Note that the build system does not delete generated
artifacts like generated code.

If you specify GarbageCollectTaskOutputs as false, the build system does not automatically
clean task results associated with tasks and artifacts that are not in the current process model or
project.

This property is equivalent to the Garbage collect task outputs setting in the Process Advisor
Settings dialog box.
Example: false
Data Types: logical

ShowDetailedErrorMessages — Setting to show more information in error messages
false or 0 (default) | true or 1

Setting to show more information in error messages, specified as a numeric or logical 0 (false) or 1
(true).

By default, error messages from the build system are not verbose.

If you specify ShowDetailedErrorMessages as true, the build system shows full stack traces in
error messages. You might want to see full stack traces when you are debugging a process model.

This property is equivalent to the Show detailed error messages setting in the Process Advisor
Settings dialog box.
Example: true
Data Types: logical

TrackProcessModel — Setting for tracking changes to process model
true or 1 (default) | false or 0

Setting for tracking changes to process model, specified as a numeric or logical 1 (true) or 0
(false).

By default, if you make a change to the process model file, the build system marks each task status
and task result as outdated because the tasks in the updated process model might not match the
tasks that generated the task results from the previous version of the process model. For example, if
you ran the built-in task padv.builtin.task.RunModelStandards with the default Model Advisor
configuration, updated the process model to specify a different Model Advisor configuration file for
the task, and then ran the task again, the task results are now outdated because they are the task
results from the default configuration.

If you specify TrackProcessModel as false and make a change to the process model, the build
system will not mark the task statuses and task results as outdated.

 padv.UserSettings Class

3-39

This property is equivalent to the Add process model as dependency setting in the Process Advisor
Settings dialog box.
Example: false
Data Types: logical

Methods
Public Methods

Get Settings for User

Method Description
get Get build system settings for current user

PREF = padv.UserSettings.get()

resetToDefaultValues Reset build system settings for current user

PREF.resetToDefaultValues()

To see the changes, use the get method to get
the latest setting values.

PREF = padv.UserSettings.get()

Examples

Get Build System Settings for User

Get for build system settings for the current user.

PREF = padv.UserSettings.get()

Alternative Functionality
App

In Process Advisor, in the toolstrip, click Settings to access and change the settings for the build
system.

3 Build System API

3-40

Pipeline Generator API

The support package provides example pipeline configuration files that you can add to your project to
automatically execute your pipeline on a continuous integration (CI) platform, like GitHub® Actions,
GitLab®, and Jenkins®. The example pipeline configuration files use the pipeline generator API to
automatically generate and execute pipelines for your specific project and process so that you do not
need to manually update any pipeline files when you make changes to your project.

For examples of how to integrate into a specific CI platform, see the "Integrate into CI" chapter in the
user's guide.

Classes

CI Platform Options

Class Description
padv.pipeline.GitHubOptions Settings that control how a generated GitHub

pipeline runs
padv.pipeline.GitLabOptions Settings that control how a generated GitLab

pipeline runs
padv.pipeline.JenkinsOptions Settings that control how a generated Jenkins

pipeline runs

Functions

Generate Pipeline for CI

Function Description
padv.pipeline.generatePipeline Generate pipeline configuration file for CI

platform

4

padv.pipeline.generatePipeline
Namespace: padv.pipeline

Generate pipeline file for CI platform

Syntax
generatorResults = padv.pipeline.generatePipeline(platformOptions)

Description
generatorResults = padv.pipeline.generatePipeline(platformOptions) generates a
pipeline file for the CI platform and options specified by platformOptions. The function
padv.pipeline.generatePipeline is a pipeline generator that can automatically generate a
pipeline file. The generated pipeline file can configure a pipeline that runs your process in CI.

Examples

Generate YML File for GitLab Pipeline

Suppose that you want to run your process using GitLab.

padv.pipeline.generatePipeline(padv.pipeline.GitLabOptions)

The generated pipeline file is 'simulink_pipeline.yml'.

For information on how to use the pipeline generator to integrate into GitLab, see "Integrate into
GitLab".

Generate Jenkinsfile for Jenkins Pipeline

Suppose that you want to run your process using Jenkins.

padv.pipeline.generatePipeline(padv.pipeline.JenkinsOptions)

The generated pipeline file is 'simulink_pipeline'.

For information on how to use the pipeline generator to integrate into Jenkins, see "Integrate into
Jenkins".

Input Arguments
platformOptions — Options for generating CI pipeline
padv.pipeline.GitLabOptions object | padv.pipeline.JenkinsOptions object

Options for generating CI pipeline, specified as:

4 Pipeline Generator API

4-2

• A padv.pipeline.GitLabOptions object to generate a YML file that you can use to run the
generated pipeline in a GitLab CI system.

• A padv.pipeline.JenkinsOptions object to generate a Jenkinsfile that you can use to run the
generated pipeline in Jenkins CI system.

Example: padv.pipeline.generatePipeline(padv.pipeline.GitLabOptions)
Example: padv.pipeline.generatePipeline(padv.pipeline.JenkinsOptions)

Output Arguments
generatorResults — Results from pipeline generator
padv.pipeline.GeneratorResults object

Results from pipeline generator, returned as a padv.pipeline.GeneratorResults object. The
filename for the generated pipeline file is stored in the property GeneratedPipelineFiles.

 padv.pipeline.generatePipeline

4-3

padv.pipeline.GitHubOptions
Options for generating GitHub pipeline configuration file

Description
Use the padv.pipeline.GitHubOptions object to represent the desired options for generating a
GitHub pipeline configuration file. To generate a GitHub pipeline configuration file, use
padv.pipeline.GitHubOptions as an input argument to the
padv.pipeline.generatePipeline function.

Note For information on how to use the pipeline generator to integrate into a GitHub CI system, see
"Integrate into GitHub".

Note If you run MATLAB using the -nodisplay option or you use a machine that does not have a
display (like many CI runners and Docker® containers), you should set up a virtual display server
before you include the following built-in tasks in your process model:

• Generate SDD Report
• Generate Simulink Web View
• Generate Model Comparison

For information, see "Set Up Virtual Display for No-Display Machine" in the User's Guide.

Creation
Description

options = padv.pipeline.GitHubOptions returns configuration options for generating a
GitHub pipeline configuration file.

options = padv.pipeline.GitHubOptions(Name=Value) sets properties using one or more
name-value arguments. For example, padv.pipeline.GitHubOptions(RunnerLabels =
"Linux") creates an options object that specifies that a generated pipeline configuration file use
Linux as the GitHub Action runner label.

Properties
RunnerLabels — GitHub runner labels
"self-hosted" (default) | string

GitHub runner labels, specified as a string.

The labels determine which GitHub runner can execute the job. For more information, see https://
docs.github.com/en/actions/using-jobs/choosing-the-runner-for-a-job#targeting-runners-in-a-group.
Example: padv.pipeline.GitHubOptions(RunnerLabels = "Linux")

4 Pipeline Generator API

4-4

https://docs.github.com/en/actions/using-jobs/choosing-the-runner-for-a-job#targeting-runners-in-a-group
https://docs.github.com/en/actions/using-jobs/choosing-the-runner-for-a-job#targeting-runners-in-a-group

Data Types: string

ArtifactZipFileName — Name of ZIP file for job artifacts
"padv_artifacts.zip" (default) | string

Name of ZIP file for job artifacts, specified as a string.
Example: padv.pipeline.GitHubOptions(ArtifactZipFileName =
"my_job_artifacts.zip")

Data Types: string

RetentionDays — How many days GitHub stores workflow artifacts
"30" (default) | string

How many days GitHub stores workflow artifacts, specified as a string. This property corresponds to
the job keyword "retention-days" in GitHub. After the specified number of retention days, the
artifacts expire and GitHub deletes the artifacts.
Example: padv.pipeline.GitHubOptions(RetentionDays = "90")
Data Types: string

GeneratedYMLFileName — File name of generated GitLab pipeline file
"simulink_pipeline" (default) | string

File name of generated GitLab pipeline file, specified as a string.

By default, the generated pipeline generates into the subfolder derived > pipeline, relative to the
project root. To change where the pipeline file generates, specify GeneratedPipelineDirectory.
Example: padv.pipeline.GitHubOptions(GeneratedYMLFileName =
"padv_generated_pipeline_file")

Data Types: string

MatlabInstallationLocation — Path to MATLAB installation location
"PATH_TO_MATLAB" (default) | string

Path to MATLAB installation location, specified as a string.

Make sure the path that you specify uses the correct MATLAB root folder location and file separators
for the operating system of your GitHub runner.
Example: "C:\Program Files\MATLAB\R2023a\bin"
Example: "/usr/local/MATLAB/R2023a/bin"
Example: "/Applications/MATLAB_R2023a.app/bin"
Data Types: string

EnableArtifactCollection — When to collect build artifacts
"always", 1, or true (default) | "never", 0, or false | "on_success" | "on_failure"

When to collect build artifacts, specified as:

• "never", 0, or false — Never collect artifacts
• "on_success" — Only collect artifacts when the pipeline succeeds

 padv.pipeline.GitHubOptions

4-5

• "on_failure" — Only collect artifacts when the pipeline fails
• "always", 1, or true — Always collect artifacts

If the pipeline collects artifacts, the child pipeline contains a job, Collect_Artifacts, that
compresses the build artifacts into a ZIP file and attaches the file to the job.
Example: padv.pipeline.GitHubOptions(EnableArtifactCollection=false)
Data Types: logical | string

ShellEnvironment — Shell environment GitHub uses to launch MATLAB
"bash" (default) | "pwsh"

Shell environment GitHub uses to launch MATLAB, specified as one of these values:

• "bash" — UNIX® shell script
• "pwsh" — PowerShell Core script

Example: padv.pipeline.GitHubOptions(ShellEnvironment = "pwsh")
Data Types: string

CheckoutSubmodules — Checkout Git™ submodules
"false" (default) | "true" | "recursive"

Checkout Git submodules at the beginning of each pipeline stage, specified as either:

• "false"
• "true"
• "recursive"

This property uses the GitHub Action checkout@v3. For information about the submodule input
values, see https://github.com/marketplace/actions/checkout-submodules.
Example: padv.pipeline.GitHubOptions(CheckoutSubmodules = "true")
Data Types: string

PipelineArchitecture — Number of stages and grouping of tasks in CI pipeline
padv.pipeline.Architecture.SingleStage (default) |
padv.pipeline.Architecture.SerialStages |
padv.pipeline.Architecture.SerialStagesGroupPerTask

Number of stages and grouping of tasks in CI pipeline, specified as either:

• padv.pipeline.Architecture.SingleStage — Single stage runs all tasks

For example, a pipeline with one stage that runs each of the tasks in the process:

1 Runprocess

4 Pipeline Generator API

4-6

https://github.com/marketplace/actions/checkout-submodules

• padv.pipeline.Architecture.SerialStages — One stage for each task iteration

For example, a pipeline with four stages:

1 TaskA_ModelA — Runs a task TaskA on the model ModelA
2 TaskA_ModelB — Runs a task TaskA on the model ModelB
3 TaskB_ModelA — Runs a task TaskB on the model ModelA
4 TaskB_ModelB — Runs a task TaskB on the model ModelB

• padv.pipeline.Architecture.SerialStagesGroupPerTask — One stage for each type of
task

For example, a pipeline with two stages:

1 TaskA — Runs a task TaskA on each model in the project
2 TaskB — Runs a task TaskB on each model in the project

 padv.pipeline.GitHubOptions

4-7

• padv.pipeline.Architecture.IndependentModelPipelines— Parallel, downstream
pipelines for each model. Each pipeline independently runs the tasks associated with the model.

For example, a pipeline with parallel downstream pipelines:

• ModelA — Runs TaskA and TaskB on ModelA.
• ModelB — Runs TaskA and TaskB on ModelB.

4 Pipeline Generator API

4-8

Example: padv.pipeline.GitHubOptions(PipelineArchitecture =
padv.pipeline.Architecture.SerialStages)

ForceRunAllTasks — Pipeline runs both up to date and outdated tasks
0 (false) (default) | 1 (true)

Pipeline runs both up to date and outdated tasks, specified as a numeric or logical 1 (true) or 0
(false).

The property defines the Force argument for the runprocess function in the generated pipeline
file.
Example: padv.pipeline.GitHubOptions(ForceRunAllTasks=true)
Data Types: logical

ExitInBatchMode — Exits MATLAB if MATLAB was run with -batch startup option
1 (true) (default) | 0 (false)

 padv.pipeline.GitHubOptions

4-9

Exits MATLAB if MATLAB was run with the -batch startup option, specified as a numeric or logical 0
(false) or 1 (true).

This property defines the ExitInBatchMode argument for the runprocess function in the
generated pipeline file.
Example: padv.pipeline.GitHubOptions(ExitInBatchMode=false)
Data Types: logical

RerunFailedTasks — Treats all tasks which previously failed as being outdated
0 (false) (default) | 1 (true)

Treats all tasks which previously failed as being outdated, specified as a numeric or logical 1 (true)
or 0 (false).

This property defines the RerunFailedTasks argument for the runprocess function in the
generated pipeline file.
Example: padv.pipeline.GitHubOptions(RerunFailedTasks=true)
Data Types: logical

RerunErroredTasks — Treats all tasks which previously generated errors as outdated
0 (false) (default) | 1 (true)

Treats all tasks which previously generated errors as outdated, specified as a numeric or logical 1
(true) or 0 (false).

This property defines the RerunErroredTasks argument for the runprocess function in the
generated pipeline file.
Example: padv.pipeline.GitHubOptions(RerunErroredTasks=true)
Data Types: logical

MatlabLaunchCmd — Command to start MATLAB program
"matlab" (default) | string

Command to start MATLAB program, specified as a string.

Use this property to specify how the pipeline starts the MATLAB program. This property defines how
the script in the generated pipeline file launches MATLAB.
Example: padv.pipeline.GitHubOptions(MatlabLaunchCmd = "matlab")
Data Types: string

MatlabStartupOptions — Command-line startup options for MATLAB
"-nodesktop -logfile output.log" (default) | string

Command-line startup options for MATLAB, specified as a string.

Use this property to specify the command-line startup options that the pipeline uses when starting
the MATLAB program. This property defines the command-line startup options that appear next to
the -batch option and MatlabLaunchCmd value in the"script" section of the generated pipeline
file. The pipeline starts MATLAB with the specified startup options.

4 Pipeline Generator API

4-10

By default, the support package launches MATLAB using the -batch option. If you need to run
MATLAB without the -batch option, specify the property AddBatchStartupOption as false.

Note If you run MATLAB using the -nodisplay option or you use a machine that does not have a
display (like many CI runners and Docker containers), you should set up a virtual display server
before you include the following built-in tasks in your process model:

• Generate SDD Report
• Generate Simulink Web View
• Generate Model Comparison

For information, see "Set Up Virtual Display for No-Display Machine" in the User's Guide.

Example: padv.pipeline.GitHubOptions(MatlabStartupOptions = "-nodesktop -
logfile mylogfile.log")

Data Types: string

AddBatchStartupOption — Specify whether to open MATLAB using -batch startup option
1 (true) (default) | 0 (false)

Specify whether to open MATLAB using -batch startup option, specified as a numeric or logical 0
(false) or 1 (true).

By default, the support package launches MATLAB in CI using the -batch startup option.

If you need to launch MATLAB with options that are not compatible with -batch, specify
AddBatchStartupOption as false.
Example: padv.pipeline.GitHubOptions(AddBatchStartupOption = false)
Data Types: logical

GeneratedPipelineDirectory — Specify where the generated pipeline file generates
fullfile("derived","pipeline") (default) | string

Specify where the generated pipeline file generates, specified as a string.

This property defines the directory where the generated pipeline file generates.

By default, the generated pipeline file is named "simulink_pipeline.yml". To change the name of
the generated pipeline file, specify GeneratedYMLFileName.
Example: padv.pipeline.GitHubOptions(GeneratedPipelineDirectory =
fullfile("derived","pipeline","test"))

Data Types: string

GenerateReport — Generate Process Advisor build report
true or 1 (default) | false or 0

Generate Process Advisor build report, specified as a numeric or logical 1 (true) or 0 (false).
Example: padv.pipeline.GitHubOptions(GenerateReport = false)
Data Types: logical

 padv.pipeline.GitHubOptions

4-11

ReportFormat — File format for generated report
"pdf" (default) | "html" | "html-file" | "docx"

File format for the generated report, specified as one of these values:

• "pdf" — PDF file
• "html" — HTML report, packaged as a zipped file that contains the HTML file, images, style

sheet, and JavaScript files of the report
• "html-file" — HTML report
• "docx" — Microsoft Word document

Example: padv.pipeline.GitHubOptions(ReportFormat = "html-file")

ReportPath — Name and path of generated report
"ProcessAdvisorReport" (default) | string array

Name and path of generated report, specified as a string array.

By default, the report generates in the current working folder with the name
"ProcessAdvisorReport".
Example: padv.pipeline.GitHubOptions(ReportPath = "myReport")
Data Types: string

StopOnStageFailure — Stop running pipeline after stage fails
0 (false) (default) | 1 (true)

Stop running pipeline after stage fails, specified as a numeric or logical 0 (false) or 1 (true).

By default, the pipeline continues to run, even if a stage in the pipeline fails.
Example: padv.pipeline.GitHubOptions(StopOnStageFailure = true)
Data Types: logical

CheckOutdatedResultsAfterMerge — Check for outdated results after merge
1 (true) (default) | 0 (false)

Check for outdated results after merge, specified as a numeric or logical 1 (true) or 0 (false).

When specified as true, the pipeline checks if task results are still up-to-date after merging artifact
database files from parallel jobs. Outdated results are not expected if the merge is successful. If there
are outdated results, there could be an issue with the merge.
Example: false
Data Types: logical

Examples

Specify GitHub Configuration Options When Generating Pipeline Configuration File

Create a padv.pipeline.GitHubOptions object and change the options. When you generate a
pipeline configuration file, the file uses the specified options.

4 Pipeline Generator API

4-12

This example shows how to use the pipeline generator API. For information on how to use the
pipeline generator to integrate into a GitHub CI system, see "Integrate into GitHub".

Load a project. For this example, you can load a Process Advisor example project. In the MATLAB
Command Window, enter:

processAdvisorExampleStart

Specify your GitHub pipeline configuration options by creating a padv.pipeline.GitHubOptions
object and modifying the object properties. For example, if you have a GitHub runner that uses a
MATLAB installation at /opt/matlab/r2023a:

GitHubOptions = padv.pipeline.GitHubOptions
GitHubOptions.MatlabInstallationLocation = "/opt/matlab/r2023a";

Generate a GitHub pipeline configuration file by using the function
padv.pipeline.generatePipeline with the specified options.

padv.pipeline.generatePipeline(GitHubOptions);

Note Calling padv.pipeline.generatePipeline(GitHubOptions) is equivalent to calling
padv.pipeline.generateGitHubPipeline(GitHubOptions).

By default, the generated pipeline configuration file is named simulink_pipeline.yml and is
located under the project root, in the subfolder derived > pipeline.

The GeneratedYMLFileName and GeneratedPipelineDirectory properties of the
padv.pipeline.GitHubOptions object control the name and location of the generated pipeline
configuration file.

For information on how to use the pipeline generator to integrate into a GitHub CI system, see
"Integrate into GitHub" in the User's Guide.

 padv.pipeline.GitHubOptions

4-13

padv.pipeline.GitLabOptions
Options for generating GitLab pipeline configuration file

Description
Use the padv.pipeline.GitLabOptions object to represent the desired options for generating a
GitLab pipeline configuration file. To generate a GitLab pipeline configuration file, use
padv.pipeline.GitLabOptions as an input argument to the
padv.pipeline.generatePipeline function.

Note For information on how to use the pipeline generator to integrate into a GitLab CI system, see
"Integrate into GitLab".

Note If you run MATLAB using the -nodisplay option or you use a machine that does not have a
display (like many CI runners and Docker containers), you should set up a virtual display server
before you include the following built-in tasks in your process model:

• Generate SDD Report
• Generate Simulink Web View
• Generate Model Comparison

For information, see "Set Up Virtual Display for No-Display Machine" in the User's Guide.

Creation

Syntax
options = padv.pipeline.GitLabOptions
options = padv.pipeline.GitLabOptions(Name=Value)

Description

options = padv.pipeline.GitLabOptions returns configuration options for generating a
GitLab pipeline configuration file.

options = padv.pipeline.GitLabOptions(Name=Value) sets properties using one or more
name-value arguments. For example, padv.pipeline.GitLabOptions(Tags="high_memory")
creates an options object that specifies that a generated pipeline configuration file use high_memory
as the GitLab CI/CD tag.

Properties
Tags — GitLab CI/CD tags
string | string array

4 Pipeline Generator API

4-14

GitLab CI/CD tags, specified as a string or string array. Use this property to specify the tags that
appear next to the tags keyword in a generated GitLab pipeline configuration file.

The GitLab CI/CD tags select a GitLab Runner for a job. The property Tags specifies which CI/CD
tags appear next to the tags keyword in a generated pipeline configuration file.

For more information on the tags keyword, see https://docs.gitlab.com/ee/ci/yaml/#tags.
Example: options = padv.pipeline.GitLabOptions(Tags="high_memory")
Data Types: string

EnableArtifactCollection — When to collect build artifacts
"always", 1, or true (default) | "never", 0, or false | "on_success" | "on_failure"

When to collect build artifacts, specified as:

• "never", 0, or false — Never collect artifacts
• "on_success" — Only collect artifacts when the pipeline succeeds
• "on_failure" — Only collect artifacts when the pipeline fails
• "always", 1, or true — Always collect artifacts

If the pipeline collects artifacts, the child pipeline contains a job, Collect_Artifacts, that
compresses the build artifacts into a ZIP file and attaches the file to the job.

This property creates an "artifacts" section in the generated pipeline file. For more information,
see the GitLab documentation: https://docs.gitlab.com/ee/ci/yaml/#artifacts.
Example: padv.pipeline.GitLabOptions(EnableArtifactCollection="on_failure")
Data Types: logical | string

ArtifactZipFileName — Name of ZIP file for job artifacts
"padv_artifacts.zip" (default) | string

Name of ZIP file for job artifacts, specified as a string.

This property specifies the file name that appears next to the "name" keyword in the generated
pipeline file. For more information, see the GitLab documentation for "artifacts:name": https://
docs.gitlab.com/ee/ci/yaml/#artifactsname.
Example: padv.pipeline.GitLabOptions(ArtifactZipFileName =
"my_job_artifacts.zip")

Data Types: string

ArtifactsExpireIn — How long GitLab stores job artifacts before the artifacts expire
"30 days" (default) |

How long GitLab stores job artifacts before the artifacts expire, specified as a string.

Use this property to specify how long GitLab stores job artifacts before the artifacts expire and
GitLab deletes the artifacts. This property specifies the expiry time that appears next to the
"expire_in" keyword in the generated pipeline file. For a list of valid possible inputs, see the
GitLab documentation for "artifacts:expire_in": https://docs.gitlab.com/ee/ci/yaml/
#artifactsexpire_in.

 padv.pipeline.GitLabOptions

4-15

https://docs.gitlab.com/ee/ci/yaml/#tags
https://docs.gitlab.com/ee/ci/yaml/#artifacts
https://docs.gitlab.com/ee/ci/yaml/#artifactsname
https://docs.gitlab.com/ee/ci/yaml/#artifactsname
https://docs.gitlab.com/ee/ci/yaml/#artifactsexpire_in
https://docs.gitlab.com/ee/ci/yaml/#artifactsexpire_in

Example: padv.pipeline.GitLabOptions(ArtifactsExpireIn = "60 days")
Data Types: string

ArtifactsWhen — When GitLab uploads job artifacts
"always" (default) | "on_success" | "on_failure"

Warning This property will be removed in a future release. Use the property
EnableArtifactCollection instead.

When GitLab uploads job artifacts, specified as either:

• "on_success"
• "on_failure"
• "always"

Use this property to specify when GitLab uploads job artifacts. This property specifies the input that
appears next to the "when" keyword in the generated pipeline file. For more information, see the
GitLab documentation for "artifacts:when": https://docs.gitlab.com/ee/ci/yaml/#artifactswhen.
Example: padv.pipeline.GitLabOptions(ArtifactsWhen = "on_success")

GeneratedYMLFileName — File name of generated GitLab pipeline file
"simulink_pipeline" (default) | string

File name of generated GitLab pipeline file, specified as a string.

By default, the generated pipeline generates into the subfolder derived > pipeline, relative to the
project root. To change where the pipeline file generates, specify GeneratedPipelineDirectory.
Example: padv.pipeline.GitLabOptions(GeneratedYMLFileName =
"padv_generated_pipeline_file")

Data Types: string

PipelineArchitecture — Number of stages and grouping of tasks in CI pipeline
padv.pipeline.Architecture.SingleStage (default) |
padv.pipeline.Architecture.SerialStages |
padv.pipeline.Architecture.SerialStagesGroupPerTask

Number of stages and grouping of tasks in CI pipeline, specified as either:

• padv.pipeline.Architecture.SingleStage — Single stage runs all tasks

For example, a pipeline with one stage that runs each of the tasks in the process:

1 Runprocess

4 Pipeline Generator API

4-16

https://docs.gitlab.com/ee/ci/yaml/#artifactswhen

• padv.pipeline.Architecture.SerialStages — One stage for each task iteration

For example, a pipeline with four stages:

1 TaskA_ModelA — Runs a task TaskA on the model ModelA
2 TaskA_ModelB — Runs a task TaskA on the model ModelB
3 TaskB_ModelA — Runs a task TaskB on the model ModelA
4 TaskB_ModelB — Runs a task TaskB on the model ModelB

• padv.pipeline.Architecture.SerialStagesGroupPerTask — One stage for each type of
task

For example, a pipeline with two stages:

1 TaskA — Runs a task TaskA on each model in the project
2 TaskB — Runs a task TaskB on each model in the project

 padv.pipeline.GitLabOptions

4-17

• padv.pipeline.Architecture.IndependentModelPipelines— Parallel, downstream
pipelines for each model. Each pipeline independently runs the tasks associated with the model.

For example, a pipeline with parallel downstream pipelines:

• ModelA — Runs TaskA and TaskB on ModelA.
• ModelB — Runs TaskA and TaskB on ModelB.

4 Pipeline Generator API

4-18

To make sure the jobs run in parallel, make sure that you either:

• Have multiple runners available. See https://docs.gitlab.com/ee/ci/yaml/#parallel.
• Configure your runner to run multiple jobs concurrently by specifying the concurrent setting.

See https://docs.gitlab.com/runner/configuration/advanced-configuration.html.

For more information on pipeline architectures, see the "Customize Pipeline Architecture" section in
"Integrate into GitLab".
Example: padv.pipeline.GitLabOptions(PipelineArchitecture =
padv.pipeline.Architecture.SerialStages)

ForceRunAllTasks — Pipeline runs both up to date and outdated tasks
0 (false) (default) | 1 (true)

Pipeline runs both up to date and outdated tasks, specified as a numeric or logical 1 (true) or 0
(false).

The property defines the Force argument for the runprocess function in the generated pipeline
file.

 padv.pipeline.GitLabOptions

4-19

https://docs.gitlab.com/ee/ci/yaml/#parallel
https://docs.gitlab.com/runner/configuration/advanced-configuration.html

Example: padv.pipeline.GitLabOptions(ForceRunAllTasks=true)
Data Types: logical

ExitInBatchMode — Exits MATLAB if MATLAB was run with the -batch startup option
1 (true) (default) | 0 (false)

Exits MATLAB if MATLAB was run with the -batch startup option, specified as a numeric or logical 0
(false) or 1 (true).

This property defines the ExitInBatchMode argument for the runprocess function in the
generated pipeline file.
Example: padv.pipeline.GitLabOptions(ExitInBatchMode=false)
Data Types: logical

RerunFailedTasks — Treats all tasks which previously failed as being outdated
0 (false) (default) | 1 (true)

Treats all tasks which previously failed as being outdated, specified as a numeric or logical 1 (true)
or 0 (false).

This property defines the RerunFailedTasks argument for the runprocess function in the
generated pipeline file.
Example: padv.pipeline.GitLabOptions(RerunFailedTasks=true)
Data Types: logical

RerunErroredTasks — Treats all tasks which previously generated errors as outdated
0 (false) (default) | 1 (true)

Treats all tasks which previously generated errors as outdated, specified as a numeric or logical 1
(true) or 0 (false).

This property defines the RerunErroredTasks argument for the runprocess function in the
generated pipeline file.
Example: padv.pipeline.GitLabOptions(RerunErroredTasks=true)
Data Types: logical

MatlabLaunchCmd — Command to start MATLAB program
"matlab" (default) | string

Command to start MATLAB program, specified as a string.

Use this property to specify how the pipeline starts the MATLAB program. This property defines how
the script in the generated pipeline file launches MATLAB.
Example: padv.pipeline.GitLabOptions(MatlabLaunchCmd = "matlab")
Data Types: string

MatlabStartupOptions — Command-line startup options for MATLAB
"-nodesktop -logfile output.log" (default) | string

Command-line startup options for MATLAB, specified as a string.

4 Pipeline Generator API

4-20

Use this property to specify the command-line startup options that the pipeline uses when starting
the MATLAB program. This property defines the command-line startup options that appear next to
the -batch option and MatlabLaunchCmd value in the"script" section of the generated pipeline
file. The pipeline starts MATLAB with the specified startup options.

By default, the support package launches MATLAB using the -batch option. If you need to run
MATLAB without the -batch option, specify the property AddBatchStartupOption as false.

Note If you run MATLAB using the -nodisplay option, you should set up a virtual display server
before you include the following built-in tasks in your process model:

• Generate SDD Report
• Generate Simulink Web View
• Generate Model Comparison

For information, see "Set Up Virtual Display for No-Display Machine" in the User's Guide.

Example: padv.pipeline.GitLabOptions(MatlabStartupOptions = "-nodesktop -
logfile mylogfile.log")

Data Types: string

AddBatchStartupOption — Specify whether to open MATLAB using -batch startup option
1 (true) (default) | 0 (false)

Specify whether to open MATLAB using -batch startup option, specified as a numeric or logical 0
(false) or 1 (true).

By default, the support package launches MATLAB in CI using the -batch startup option.

If you need to launch MATLAB with options that are not compatible with -batch, specify
AddBatchStartupOption as false.
Example: padv.pipeline.GitLabOptions(AddBatchStartupOption = false)
Data Types: logical

GeneratedPipelineDirectory — Specify where the generated pipeline file generates
fullfile("derived","pipeline") (default) | string

Specify where the generated pipeline file generates, specified as a string.

This property defines the directory where the generated pipeline file generates.

By default, the generated pipeline file is named "simulink_pipeline.yml". To change the name of
the generated pipeline file, specify GeneratedYMLFileName.
Example: padv.pipeline.GitLabOptions(GeneratedPipelineDirectory =
fullfile("derived","pipeline","test"))

Data Types: string

GenerateJUnitForProcess — Generate JUnit-style XML reports for process
true or 1 (default) | false or 0

 padv.pipeline.GitLabOptions

4-21

Generate JUnit-style XML reports for each task in the process, specified as a numeric or logical 1
(true) or 0 (false).

JUnit reports allow you see which tests failed in CI without having to examine the job logs.

If you generate JUnit reports, GitLab shows any test failures directly in the merge request and
pipeline detail view. For more information on how GitLab displays JUnit results, see the GitLab
documentation: https://docs.gitlab.com/ee/ci/testing/unit_test_reports.html#view-unit-test-reports-on-
gitlab.
Example: padv.pipeline.GitLabOptions(GenerateJUnitForProcess = false)
Data Types: logical

GenerateReport — Generate Process Advisor build report
true or 1 (default) | false or 0

Generate Process Advisor build report, specified as a numeric or logical 1 (true) or 0 (false).
Example: padv.pipeline.GitLabOptions(GenerateReport = false)
Data Types: logical

ReportFormat — File format for generated report
"pdf" (default) | "html" | "html-file" | "docx"

File format for the generated report, specified as one of these values:

• "pdf" — PDF file
• "html" — HTML report, packaged as a zipped file that contains the HTML file, images, style

sheet, and JavaScript files of the report
• "html-file" — HTML report
• "docx" — Microsoft Word document

Example: padv.pipeline.GitLabOptions(ReportFormat = "html-file")

ReportPath — Name and path of generated report
"ProcessAdvisorReport" (default) | string array

Name and path of generated report, specified as a string array.

By default, the report generates in the current working folder with the name
"ProcessAdvisorReport".
Example: padv.pipeline.GitLabOptions(ReportPath = "myReport")
Data Types: string

StopOnStageFailure — Stop running pipeline after stage fails
0 (false) (default) | 1 (true)

Stop running pipeline after stage fails, specified as a numeric or logical 0 (false) or 1 (true).

By default, the pipeline continues to run, even if a stage in the pipeline fails.
Example: padv.pipeline.GitLabOptions(StopOnStageFailure = true)
Data Types: logical

4 Pipeline Generator API

4-22

https://docs.gitlab.com/ee/ci/testing/unit_test_reports.html#view-unit-test-reports-on-gitlab
https://docs.gitlab.com/ee/ci/testing/unit_test_reports.html#view-unit-test-reports-on-gitlab

CheckOutdatedResultsAfterMerge — Check for outdated results after merge
1 (true) (default) | 0 (false)

Check for outdated results after merge, specified as a numeric or logical 1 (true) or 0 (false).

When specified as true, the pipeline checks if task results are still up-to-date after merging artifact
database files from parallel jobs. Outdated results are not expected if the merge is successful. If there
are outdated results, there could be an issue with the merge.
Example: false
Data Types: logical

Examples

Specify GitLab Configuration Options When Generating Pipeline Configuration File

Create a padv.pipeline.GitLabOptions object and change the options. When you generate a
pipeline configuration file, the file uses the specified options.

This example shows how to use the pipeline generator API. For information on how to use the
pipeline generator to integrate into a GitLab CI system, see "Integrate into GitLab".

Load a project. For this example, you can load a Process Advisor example project. In the MATLAB
Command Window, enter:

processAdvisorExampleStart

Create a padv.pipeline.GitLabOptions object for generating a GitLab pipeline configuration
file. Specify a GitLab CI/CD tag of high_memory, specify that the function runprocess should not
automatically exit MATLAB after the pipeline finishes running, and a single stage pipeline
architecture.

GitLabOptions = padv.pipeline.GitLabOptions(...
Tags = "high_memory",...
ExitInBatchMode = 0,...
PipelineArchitecture = padv.pipeline.Architecture.SingleStage);

Generate a GitLab pipeline configuration file by using the function
padv.pipeline.generatePipeline with the specified options.

padv.pipeline.generatePipeline(GitLabOptions);

Note Calling padv.pipeline.generatePipeline(GitLabOptions) is equivalent to calling
padv.pipeline.generateGitLabPipeline(GitLabOptions).

By default, the generated pipeline file is named simulink_pipeline.yml and is saved in the
derived > pipeline folder, relative to the project root. To change the name of the generated pipeline
file, specify the argument GeneratedYMLFileName for padv.pipeline.GitLabOptions. To
change where the pipeline file generates, specify the argument GeneratedPipelineDirectory.

For information on how to use the pipeline generator to integrate into a GitLab CI system, see
"Integrate into GitLab" in the User's Guide.

 padv.pipeline.GitLabOptions

4-23

padv.pipeline.JenkinsOptions
Options for generating Jenkins pipeline configuration file

Description
Use the padv.pipeline.JenkinsOptions object to represent the desired options for generating a
Jenkins pipeline configuration file. To generate a Jenkins pipeline configuration file, use
padv.pipeline.JenkinsOptions as an input argument to the
padv.pipeline.generatePipeline function.

Note For information on how to use the pipeline generator to integrate into a Jenkins CI system, see
"Integrate into Jenkins".

Note If you run MATLAB using the -nodisplay option or you use a machine that does not have a
display (like many CI runners and Docker containers), you should set up a virtual display server
before you include the following built-in tasks in your process model:

• Generate SDD Report
• Generate Simulink Web View
• Generate Model Comparison

For information, see "Set Up Virtual Display for No-Display Machine" in the User's Guide.

Creation

Syntax
options = padv.pipeline.JenkinsOptions
options = padv.pipeline.JenkinsOptions(Name=Value)

Description

options = padv.pipeline.JenkinsOptions returns configuration options for generating a
Jenkins pipeline configuration file.

options = padv.pipeline.JenkinsOptions(Name=Value) sets properties using one or more
name-value arguments. For example, padv.pipeline.JenkinsOptions(AgentLabel =
"high_memory") creates an object that specifies that a generated pipeline configuration file use an
agent with the label high_memory.

Properties
AgentLabel — Which Jenkins agent executes pipeline tasks in Jenkins environment
"any" (default) | string | string array

4 Pipeline Generator API

4-24

Which Jenkins agent executes pipeline tasks in the Jenkins environment, specified as a string or
string array.

Use this property to specify the Jenkins agent that executes all stages in the pipeline. Jenkins agents
are typically either a machine or a container. For more information, see the "Glossary" in the Jenkins
documentation: https://www.jenkins.io/doc/book/glossary/#agent.
Example: options = padv.pipeline.JenkinsOptions(AgentLabel="high_memory")
Data Types: string

EnableArtifactCollection — When to collect build artifacts
"always", 1, or true (default) | "never", 0, or false | "on_success" | "on_failure"

When to collect build artifacts, specified as:

• "never", 0, or false — Never collect artifacts
• "on_success" — Only collect artifacts when the pipeline succeeds
• "on_failure" — Only collect artifacts when the pipeline fails
• "always", 1, or true — Always collect artifacts

If you choose to collect artifacts, the child pipeline contains a job, Collect_Artifacts, that collects
the build artifacts and attaches the artifacts to the Collect_Artifacts job.

This property uses the Jenkins Core Plugin to add an "archiveArtifacts" step in the generated
Jenkinsfile that defines the Jenkins pipeline. Install the Jenkins Core Plugin before you specify
EnableArtifactCollection. For more information, see the Jenkins documentation for
"archiveArtifacts": https://www.jenkins.io/doc/pipeline/steps/core/#archiveartifacts-archive-the-
artifacts.
Example: padv.pipeline.JenkinsOptions(EnableArtifactCollection="on_failure")
Data Types: logical | string

ArtifactZipFileName — Name of ZIP file for job artifacts
"padv_artifacts.zip" (default) | string

Name of ZIP file for job artifacts, specified as a string.

This property specifies the file name that appears next to the "artifacts" for the
"archiveArtifacts" step in the generated Jenkinsfile that defines the Jenkins pipeline.

For more information, see the Jenkins documentation for "archiveArtifacts": https://
www.jenkins.io/doc/pipeline/steps/core/#archiveartifacts-archive-the-artifacts.
Example: padv.pipeline.JenkinsOptions(ArtifactZipFileName =
"my_job_artifacts.zip")

Data Types: string

SaveArtifactsOnSuccess — Setting to only archive artifacts for successful builds
1 (true) (default) | 0 (false)

Warning This property will be removed in a future release. Use the property
EnableArtifactCollection instead.

 padv.pipeline.JenkinsOptions

4-25

https://www.jenkins.io/doc/book/glossary/#agent
https://www.jenkins.io/doc/pipeline/steps/core/#archiveartifacts-archive-the-artifacts
https://www.jenkins.io/doc/pipeline/steps/core/#archiveartifacts-archive-the-artifacts
https://www.jenkins.io/doc/pipeline/steps/core/#archiveartifacts-archive-the-artifacts
https://www.jenkins.io/doc/pipeline/steps/core/#archiveartifacts-archive-the-artifacts

Setting to only archive artifacts for successful builds, specified as a numeric or logical 0 (false) or 1
(true).

Use this property to specify whether Jenkins only saves build artifacts for successful builds. This
property corresponds to the argument "onlyIfSuccessful" for the "artifacts" in the
"archiveArtifacts" step in the Jenkinsfile that defines the pipeline.

For more information, see the Jenkins documentation for "archiveArtifacts": https://
www.jenkins.io/doc/pipeline/steps/core/#archiveartifacts-archive-the-artifacts.
Example: padv.pipeline.JenkinsOptions(SaveArtifactsOnSuccess = false)
Data Types: logical

GeneratedJenkinsFileName — File name of generated Jenkins pipeline file
"simulink_pipeline" (default) | string

File name of generated Jenkins pipeline file, specified as a string.

By default, the generated pipeline generates into the subfolder derived > pipeline, relative to the
project root. To change where the pipeline file generates, specify GeneratedPipelineDirectory.
Example: padv.pipeline.JenkinsOptions(GeneratedJenkinsFileName =
"padv_generated_pipeline_file")

Data Types: string

UseMatlabPlugin — Specify whether Jenkins uses MATLAB Plugin to launch MATLAB
1 (true) (default) | 0 (false)

Specify whether Jenkins uses MATLAB Plugin to launch MATLAB, specified as a numeric or logical 0
(false) or 1 (true).

If the property UseMatlabPlugin is true, Jenkins uses the "runMATLABCommand" step to launch
MATLAB and the pipeline generator ignores the properties MatlabLaunchCmd and
MatlabStartupOptions. For more information, see the Jenkins documentation for
"runMATLABCommand": https://www.jenkins.io/doc/pipeline/steps/matlab/#runmatlabcommand-run-
matlab-commands-scripts-or-functions

If the property UseMatlabPlugin is false, Jenkins uses the specified ShellEnvironment to
launch MATLAB and uses the options specified by the properties MatlabLaunchCmd and
MatlabStartupOptions.

Using the MATLAB Plugin for Jenkins is recommended. For more information, see https://
plugins.jenkins.io/matlab/.
Example: padv.pipeline.JenkinsOptions(UseMatlabPlugin = false)
Data Types: logical

ShellEnvironment — Shell environment Jenkins uses to launch MATLAB
"" (default) | string

Shell environment Jenkins uses to launch MATLAB, specified as one of these values:

• "bat" — Windows® batch script
• "sh" — Shell script

4 Pipeline Generator API

4-26

https://www.jenkins.io/doc/pipeline/steps/core/#archiveartifacts-archive-the-artifacts
https://www.jenkins.io/doc/pipeline/steps/core/#archiveartifacts-archive-the-artifacts
https://www.jenkins.io/doc/pipeline/steps/matlab/#runmatlabcommand-run-matlab-commands-scripts-or-functions
https://www.jenkins.io/doc/pipeline/steps/matlab/#runmatlabcommand-run-matlab-commands-scripts-or-functions
https://plugins.jenkins.io/matlab/
https://plugins.jenkins.io/matlab/

• "pwsh" — PowerShell Core script
• "powershell" — Windows PowerShell script
• "" — Automatically use "bat" or "sh" based on the platform where pipeline generation runs

If the property UseMatlabPlugin is true, Jenkins uses the "runMATLABCommand" step to launch
MATLAB and the pipeline generator ignores the properties MatlabLaunchCmd and
MatlabStartupOptions. For more information, see the Jenkins documentation for
"runMATLABCommand": https://www.jenkins.io/doc/pipeline/steps/matlab/#runmatlabcommand-run-
matlab-commands-scripts-or-functions

If the property UseMatlabPlugin is false, Jenkins uses the specified ShellEnvironment to
launch MATLAB and uses the options specified by the properties MatlabLaunchCmd and
MatlabStartupOptions.
Example: padv.pipeline.JenkinsOptions(UseMatlabPlugin = false, ShellEnvironment
= "bat")

Data Types: string

PipelineArchitecture — Number of stages and grouping of tasks in CI pipeline
padv.pipeline.Architecture.SingleStage (default) |
padv.pipeline.Architecture.SerialStages |
padv.pipeline.Architecture.SerialStagesGroupPerTask

Number of stages and grouping of tasks in CI pipeline, specified as either:

• padv.pipeline.Architecture.SingleStage — Single stage runs all tasks

For example, a pipeline with one stage that runs each of the tasks in the process:

1 Runprocess

• padv.pipeline.Architecture.SerialStages — One stage for each task iteration

For example, a pipeline with four stages:

1 TaskA_ModelA — Runs a task TaskA on the model ModelA
2 TaskA_ModelB — Runs a task TaskA on the model ModelB
3 TaskB_ModelA — Runs a task TaskB on the model ModelA

 padv.pipeline.JenkinsOptions

4-27

https://www.jenkins.io/doc/pipeline/steps/matlab/#runmatlabcommand-run-matlab-commands-scripts-or-functions
https://www.jenkins.io/doc/pipeline/steps/matlab/#runmatlabcommand-run-matlab-commands-scripts-or-functions

4 TaskB_ModelB — Runs a task TaskB on the model ModelB

• padv.pipeline.Architecture.SerialStagesGroupPerTask — One stage for each type of
task

For example, a pipeline with two stages:

1 TaskA — Runs a task TaskA on each model in the project
2 TaskB — Runs a task TaskB on each model in the project

• padv.pipeline.Architecture.IndependentModelPipelines— Parallel, downstream
pipelines for each model. Each pipeline independently runs the tasks associated with the model.

For example, a pipeline with parallel downstream pipelines:

• ModelA — Runs TaskA and TaskB on ModelA.
• ModelB — Runs TaskA and TaskB on ModelB.

4 Pipeline Generator API

4-28

For more information on pipeline architectures, see the "Customize Pipeline Architecture" section in
"Integrate into Jenkins".
Example: padv.pipeline.JenkinsOptions(PipelineArchitecture =
padv.pipeline.Architecture.SerialStages)

ForceRunAllTasks — Pipeline runs both up to date and outdated tasks
0 (false) (default) | 1 (true)

Pipeline runs both up to date and outdated tasks, specified as a numeric or logical 1 (true) or 0
(false).

The property defines the Force argument for the runprocess function in the generated pipeline
file.
Example: padv.pipeline.JenkinsOptions(ForceRunAllTasks=true)
Data Types: logical

ExitInBatchMode — Exits MATLAB if MATLAB was run with the -batch startup option
1 (true) (default) | 0 (false)

 padv.pipeline.JenkinsOptions

4-29

Exits MATLAB if MATLAB was run with the -batch startup option, specified as a numeric or logical 0
(false) or 1 (true).

This property defines the ExitInBatchMode argument for the runprocess function in the
generated pipeline file.
Example: padv.pipeline.JenkinsOptions(ExitInBatchMode=false)
Data Types: logical

RerunFailedTasks — Treats all tasks which previously failed as being outdated
0 (false) (default) | 1 (true)

Treats all tasks which previously failed as being outdated, specified as a numeric or logical 1 (true)
or 0 (false).

This property defines the RerunFailedTasks argument for the runprocess function in the
generated pipeline file.
Example: padv.pipeline.JenkinsOptions(RerunFailedTasks=true)
Data Types: logical

RerunErroredTasks — Treats all tasks which previously generated errors as outdated
0 (false) (default) | 1 (true)

Treats all tasks which previously generated errors as outdated, specified as a numeric or logical 1
(true) or 0 (false).

This property defines the RerunErroredTasks argument for the runprocess function in the
generated pipeline file.
Example: padv.pipeline.JenkinsOptions(RerunErroredTasks=true)
Data Types: logical

MatlabLaunchCmd — Command to start MATLAB program
"matlab" (default) | string

Command to start MATLAB program, specified as a string.

Use this property to specify how the pipeline starts the MATLAB program. This property defines how
the generated pipeline file launches MATLAB.
Example: padv.pipeline.JenkinsOptions(MatlabLaunchCmd = "matlab")
Data Types: string

MatlabStartupOptions — Command-line startup options for MATLAB
"-nodesktop -logfile output.log" (default) | string

Command-line startup options for MATLAB, specified as a string.

Use this property to specify the command-line startup options that the pipeline uses when starting
the MATLAB program. This property defines the command-line startup options that appear next to
the -batch option and MatlabLaunchCmd value in the"script" section of the generated pipeline
file. The pipeline starts MATLAB with the specified startup options.

4 Pipeline Generator API

4-30

By default, the support package launches MATLAB using the -batch option. If you need to run
MATLAB without the -batch option, specify the property AddBatchStartupOption as false.

Note If you run MATLAB using the -nodisplay option, you should set up a virtual display server
before you include the following built-in tasks in your process model:

• Generate SDD Report
• Generate Simulink Web View
• Generate Model Comparison

For information, see "Set Up Virtual Display for No-Display Machine" in the User's Guide.

Example: padv.pipeline.JenkinsOptions(MatlabStartupOptions = "-nodesktop -
logfile mylogfile.log")

Data Types: string

AddBatchStartupOption — Specify whether to open MATLAB using -batch startup option
1 (true) (default) | 0 (false)

Specify whether to open MATLAB using -batch startup option, specified as a numeric or logical 0
(false) or 1 (true).

By default, the support package launches MATLAB in CI using the -batch startup option.

If you need to launch MATLAB with options that are not compatible with -batch, specify
AddBatchStartupOption as false.
Example: padv.pipeline.JenkinsOptions(AddBatchStartupOption = false)
Data Types: logical

GeneratedPipelineDirectory — Specify where the generated pipeline file generates
fullfile("derived","pipeline") (default) | string

Specify where the generated pipeline file generates, specified as a string.

This property defines the directory where the generated pipeline file generates.

By default, the generated pipeline file is named "simulink_pipeline". To change the name of the
generated pipeline file, specify GeneratedJenkinsFileName.
Example: padv.pipeline.JenkinsOptions(GeneratedPipelineDirectory =
fullfile("derived","pipeline","test"))

Data Types: string

GenerateJUnitForProcess — Generate JUnit-style XML reports for process
true or 1 (default) | false or 0

Generate JUnit-style XML reports for each task in the process, specified as a numeric or logical 1
(true) or 0 (false).

JUnit reports allow you see which tests failed in CI without having to examine the job logs.

 padv.pipeline.JenkinsOptions

4-31

If you generate JUnit reports, Jenkins can show test failures and trends directly in the user interface.
For more information on how Jenkins displays JUnit results, see the Jenkins documentation: https://
plugins.jenkins.io/junit/.

Note You must have the JUnit plugin installed on your Jenkins controller to see JUnit results. For
information, see https://plugins.jenkins.io/junit/.

Example: padv.pipeline.JenkinsOptions(GenerateJUnitForProcess = false)
Data Types: logical

GenerateReport — Generate Process Advisor build report
true or 1 (default) | false or 0

Generate Process Advisor build report, specified as a numeric or logical 1 (true) or 0 (false).
Example: padv.pipeline.JenkinsOptions(GenerateReport = false)
Data Types: logical

ReportFormat — File format for generated report
"pdf" (default) | "html" | "html-file" | "docx"

File format for the generated report, specified as one of these values:

• "pdf" — PDF file
• "html" — HTML report, packaged as a zipped file that contains the HTML file, images, style

sheet, and JavaScript files of the report
• "html-file" — HTML report
• "docx" — Microsoft Word document

Example: padv.pipeline.JenkinsOptions(ReportFormat = "html-file")

ReportPath — Name and path of generated report
"ProcessAdvisorReport" (default) | string array

Name and path of generated report, specified as a string array.

By default, the report generates in the current working folder with the name
"ProcessAdvisorReport".
Example: padv.pipeline.JenkinsOptions(ReportFormat = "myReport")
Data Types: string

StopOnStageFailure — Stop running pipeline after stage fails
0 (false) (default) | 1 (true)

Stop running pipeline after stage fails, specified as a numeric or logical 0 (false) or 1 (true).

By default, the pipeline continues to run, even if a stage in the pipeline fails.
Example: padv.pipeline.JenkinsOptions(StopOnStageFailure = true)
Data Types: logical

4 Pipeline Generator API

4-32

https://plugins.jenkins.io/junit/
https://plugins.jenkins.io/junit/
https://plugins.jenkins.io/junit/

CheckOutdatedResultsAfterMerge — Check for outdated results after merge
1 (true) (default) | 0 (false)

Check for outdated results after merge, specified as a numeric or logical 1 (true) or 0 (false).

When specified as true, the pipeline checks if task results are still up-to-date after merging artifact
database files from parallel jobs. Outdated results are not expected if the merge is successful. If there
are outdated results, there could be an issue with the merge.
Example: false
Data Types: logical

Examples

Specify Jenkins Configuration Options When Generating Pipeline Configuration File

Create a padv.pipeline.JenkinsOptions object and change the options. When you generate a
pipeline configuration file, the file uses the specified options.

This example shows how to use the pipeline generator API. For information on how to use the
pipeline generator to integrate into a Jenkins CI system, see "Integrate into Jenkins".

Load a project. For this example, you can load a Process Advisor example project. In the MATLAB
Command Window, enter:

processAdvisorExampleStart

Create a padv.pipeline.JenkinsOptions object for generating a Jenkins pipeline configuration
file. Specify a Jenkins agent label of high_memory, specify that the function runprocess should not
automatically exit MATLAB after the pipeline finishes running, and a single stage pipeline
architecture.

JenkinsOptions = padv.pipeline.JenkinsOptions(...
AgentLabel = "high_memory",...
ExitInBatchMode = 0,...
PipelineArchitecture = padv.pipeline.Architecture.SingleStage);

Generate a Jenkins pipeline configuration file by using the function
padv.pipeline.generatePipeline with the specified options.

padv.pipeline.generatePipeline(JenkinsOptions);

Note Calling padv.pipeline.generatePipeline(JenkinsOptions) is equivalent to calling
padv.pipeline.generateJenkinsPipeline(JenkinsOptions).

By default, the generated pipeline file is named simulink_pipeline and is saved in the derived >
pipeline folder, relative to the project root. To change the name of the generated pipeline file, specify
the argument GeneratedJenkinsFileName for padv.pipeline.JenkinsOptions. To change
where the pipeline file generates, specify the argument GeneratedPipelineDirectory.

For information on how to use the pipeline generator to integrate into a Jenkins CI system, see
"Integrate into Jenkins" in the User's Guide.

 padv.pipeline.JenkinsOptions

4-33

Report Generator API

After you run your tasks, you can use the report generator to create a report with the most recent
task results. The report summarizes the task statuses, task results, and other information about the
task execution.

For example, if you run the tasks in the default MBD pipeline, the report provides an overview of the:

• Model Advisor analysis, including the number of passing, warning, and failing checks
• Test results, organized by iteration
• Generated code files
• Coding standards checks

For an example, see "Prequalify Changes Before Submitting to Source Control" in the User's Guide
PDF.

Functions

Create and Access Process Model

Function Description
generateReport Generate report with recent task results

5

generateReport
Generate report with recent task results

Syntax
generateReport(reportSettings)
generateReport(___ ,Name,Value)

Description
generateReport(reportSettings) generates a report with the most recent task results.

After you run tasks using the Process Advisor app or runprocess function, you can use the
generateReport function to generate a report of the task results.

Alternatively, you can use runprocess with the GenerateReport name-value argument specified as
true: runprocess(GenerateReport = true).

generateReport(___ ,Name,Value) specifies options using one or more name-value arguments.

For example, to generate a report in HTML format:

generateReport(padv.ProcessAdvisorReportGenerator(Format="html-file"))

Examples

Generate Report with Task Results

Run a task and generate a report with the task results.

Open the Process Advisor example project.

processAdvisorExampleStart

This command creates a copy of the Process Advisor example project and opens Process Advisor on
the model AHRS_Voter.

Run a task. For this example, in Process Advisor, point to the task Generate Simulink Web View
and click the run button .

Use the generateReport function to generate an HTML report with the task results.

5 Report Generator API

5-2

generateReport(padv.ProcessAdvisorReportGenerator(Format="html-file"))

The report, ProcessAdvisorReport.html, generates in the current working folder.

Open and inspect the report. The report shows a summary of the task status, results, inputs, and
outputs.

Input Arguments
reportSettings — Report generation settings
padv.ProcessAdvisorReportGenerator object

Report generation settings, specified as a padv.ProcessAdvisorReportGenerator object.
Example: generateReport(padv.ProcessAdvisorReportGenerator)

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: generateReport(padv.ProcessAdvisorReportGenerator(Format="html-file"))

Format — File format for generated report
"pdf" (default) | "html" | "html-file" | "docx"

File format for the generated report, specified as one of these values:

• "pdf" — PDF file
• "html" — HTML report, packaged as a zipped file that contains the HTML file, images, style

sheet, and JavaScript files of the report
• "html-file" — HTML report
• "docx" — Microsoft Word document

Example: generateReport(padv.ProcessAdvisorReportGenerator(Format="html-file"))

OutputPath — Name and path of generated report
"ProcessAdvisorReport" (default) | string array

Name and path of generated report, specified as a string array.

By default, the report generates in the current working folder with the name
"ProcessAdvisorReport".
Example: generateReport(padv.ProcessAdvisorReportGenerator(OutputPath = "tools/
myReport"))

Data Types: string

Tips
• If you want to run tasks and generate a report in batch mode, you need to specify the

runprocess argument ExitInBatchMode as false and use the exitCode returned by
runprocess to exit:

 generateReport

5-3

[buildResult, exitCode] = runprocess(ExitInBatchMode=false);
rptObj = padv.ProcessAdvisorReportGenerator();
generateReport(rptObj);
exit(exitCode);

Otherwise, the function runprocess automatically exits MATLAB before the report can generate.

Alternative Functionality
Alternatively, you can use runprocess with the GenerateReport name-value argument specified as
true: runprocess(GenerateReport = true).

5 Report Generator API

5-4

Utilities

Classes

Specify Artifact Address for padv.Artifact Object

Class Description
padv.util.ArtifactAddress Address for artifact in project

Functions

Close Models Loaded by Task

Function Description
padv.util.closeModelsLoadedByTask Close models loaded by task

Get Current Project and Referenced Projects

Function Description
padv.util.getCurrentProject Get current project and persist project instance

Note This function can be faster than the
currentProject function because it creates a
persistent variable for the current project
instance.

padv.util.getProjectReferences Get list of project references

Get Information From Artifact

Function Description
padv.util.getModelName Find name of model that contains artifact
padv.util.getTestCaseID Find ID for test case that contains artifact

If your team generates code in parallel by generating an external code cache (see
GenerateExternalCodeCache property for built-in task padv.builtin.task.GenerateCode),
downstream tasks that depend on the generated code need to unpack the generated code target
before running the task action. Built-in tasks like padv.builtin.task.AnalyzeModelCode unpack
by using the utility function padv.util.unpackExternalCodeCache.

6

Reanalyze Project From Scratch

Function Description
padv.util.forceReanalyzeProject Reanalyze project and log analysis events

Note You should only use the function
padv.util.forceReanalyzeProject if there
are unexpected project analysis issues. For
general task and result cleanup, use runprocess
instead.

Refresh Process Model

Function Description
padv.util.refreshProcessModel Refresh process model data

Save and Merge Artifact Database Files

Function Description
padv.util.mergeArtifactDatabases Merge artifact database files
padv.util.saveArtifactDatabase Save copy of artifact database file

Unpack Generated Code Target

Function Description
padv.util.unpackExternalCodeCache Unpack code generation target from Simulink

cache files

Process Advisor and the build system are able to detect changes to project files and identify outdated
tasks by using the information in the artifact database file, located in derived > artifacts.dmr.

When your team works on multiple machines or runs tasks in parallel, you generate different versions
of artifact database file. To create an artifact database file that includes the latest changes, you can
save a base artifact database file and merge artifact database files by using the functions
padv.util.saveArtifactDatabase and padv.util.mergeArtifactDatabases.

6 Utilities

6-2

padv.util.ArtifactAddress
Address for artifact in project

Description
Use the padv.util.ArtifactAddress object to represent the address of an artifact in your
project.

Creation

Syntax
addressObj = padv.util.ArtifactAddress(filePath)
addressObj = padv.util.ArtifactAddress(___ ,Name=Value)

Description

addressObj = padv.util.ArtifactAddress(filePath) creates an artifact address by using
the file path specified by filePath. You can access information inside the artifact address object by
using the object functions listed below.

addressObj = padv.util.ArtifactAddress(___ ,Name=Value) creates an artifact address
using the settings specified by one or more name-value arguments. For example, to create an artifact
address that specifies the name of the project that contains the artifact, specify
OwningProjectName=projectName.

Input Arguments

filePath — File path
string array

File path, specified as a string array.
Example: padv.util.ArtifactAddress(fullfile("tools","sampleChecks.json"))
Data Types: string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: padv.util.ArtifactAddress(filePath,OwningProjectName=projectName)

OwningProjectName — Project that contains artifact
string array

Project that contains the artifact, specified as a string array.

 padv.util.ArtifactAddress

6-3

You can retrieve the owning project name of an artifact address object by using the
getOwningProject object function.
Example: "ProcessAdvisorExample"
Data Types: string

Track — Setting for tracking changes to artifact
true or 1 | false or 0

Setting for tracking changes to the artifact, specified as a numeric or logical 1 (true) or 0 (false).

For more information, see "Turn Off Change Tracking for Input Artifacts".
Example: false
Data Types: logical

Object Functions
Function Description
getFileAddress Get address of file on disk.

getFileAddress(addressObj)

getKey Get unique address of artifact.

getKey(addressObj)

getOwningProject Get name of project that contains the artifact.

getOwningProject(addressObj)

isFileArtifact Determine if input is file.

isFileArtifact(addressObj)

isSubFileArtifact Determine if input is subfile. A subfile is a part of
a larger file.

For example, a subsystem is a subfile of a model
file.

isSubFileArtifact(addressObj)

Examples

Specify Address for Artifact

Create artifact address for file in project.

addressObj = padv.util.ArtifactAddress(...
fullfile("tools","sampleChecks.json"));

Use artifact address to create padv.Artifact object.

6 Utilities

6-4

paArtifact = padv.Artifact("other_file",addressObj)

Specify Which Project Contains Artifact

Specify the name of the project that contains the artifact.

projectName = "My Reference Project";

Specify that the project contains the artifact.

addressObj = padv.util.ArtifactAddress(fullfile("tools","sampleChecks.json"),...
OwningProjectName=projectName)

You can view which project contains the artifact by using the getOwningProject function.

getOwningProject(addressObj)

ans =

 "My Reference Project"

 padv.util.ArtifactAddress

6-5

padv.util.closeModelsLoadedByTask
Close models loaded by task

Syntax
padv.util.closeModelsLoadedByTask(PreviouslyLoadedModels = modelList)

Description
padv.util.closeModelsLoadedByTask(PreviouslyLoadedModels = modelList) closes
models that were loaded by the current task. The function determines which models the task loaded
by comparing the current list of loaded models to a list of previously loaded models, modelList. The
function uses close_system(model,0) to close the models without saving.

Use this function inside the run function of a custom task to close all models loaded by the task. Note
that the function does not close models that are open in the Simulink Editor.

Examples

Close Models Loaded by Task

Find which models were already loaded and then use the function
padv.util.closeModelsLoadedByTask to close only models loaded by the current task.

Inside the run function for your custom task, use the function get_param to find and save a list of
the previously loaded models. Then, after your task performs its action and specifies the task results,
close the models loaded by the task. For example, the run function in your custom task might look
like:

 function taskResult=run(obj, input)
 % Before the task loads models, save a list of the models that are already loaded.
 loadedModels = get_param(Simulink.allBlockDiagrams(), 'Name');

 % <load models for this task>
 % <specify task results>

 % Close models that were loaded by this task.
 padv.util.closeModelsLoadedByTask(PreviouslyLoadedModels=loadedModels);
 end

Input Arguments
modelList — List of previously loaded models

List of previously loaded models, specified as an array of model names.

You can use the function get_param to find the currently loaded models:

loadedModels = get_param(Simulink.allBlockDiagrams(), 'Name');

6 Utilities

6-6

Example: {'modelA';'modelB';'modelC'}

 padv.util.closeModelsLoadedByTask

6-7

padv.util.forceReanalyzeProject
Reanalyze project and log analysis events

Syntax
padv.util.forceReanalyzeProject()

Description
padv.util.forceReanalyzeProject() forces a reanalysis of the current project by creating
backups of the existing artifact database (artifacts.dmr), clearing the existing project analysis,
and reanalyzing the project. The function also logs project analysis events, which can help with
troubleshooting persistent project analysis issues. Note that when you run the function, the function
closes and reopens the project.

The function creates backup files and detailed logs in the derived folder in the project and creates a
ZIP file containing these artifacts for further analysis. The files include:

• artifacts_no_update.dmr.bak — Backup of the artifacts.dmr file before update
• artifacts_update.dmr.bak — Backup of the artifacts.dmr file after update
• artifacts_new.dmr.bak — Backup of the artifacts.dmr file after reanalysis
• dt_Event_Log.txt — Event log file
• detailed_logs.txt — Detailed log file
• logs.zip — ZIP file containing the above files

Note You should only use the function padv.util.forceReanalyzeProject if there are
unexpected project analysis issues. When you clear the existing project analysis file, you might
permanently lose important information, including the UUIDs that the digital thread assigned to
artifacts in your project. Reanalyzing a project might take some time to complete. The
artifacts.dmr file might be used by other project users and if you use other tools that use the
digital thread, you might need to re-run the metrics in those tools.

For general task and result cleanup, use runprocess instead. The runprocess function has name-
value arguments, Clean and DeleteOutputs, that you can use to clean task results and delete task
outputs. For information, see runprocess in this PDF.

6 Utilities

6-8

padv.util.getCurrentProject
Get current project and persist project instance

Syntax
cp = padv.util.getCurrentProject()

Description
cp = padv.util.getCurrentProject() gets the currently open project, and returns a project
object, cp. You can use this function to get the current project in your code, for example, in custom
queries. This function can be faster than the currentProject function because cp is a persistent
variable.

Examples

Get Current Project

Get the current project, represented by a matlab.project.Project object.

Open the Process Advisor example project.

processAdvisorExampleStart

Get the current project.

cp = padv.util.getCurrentProject()

Output Arguments
cp — Current project
matlab.project.Project

Current project, returned as a matlab.project.Project object. cp is a persistent variable that
can remain in memory between calls to the function.

If you do not have a project open, then the function returns an empty array.

 padv.util.getCurrentProject

6-9

padv.util.getModelName
Namespace: padv.util

Find name of model that contains artifact

Syntax
modelName = padv.util.getModelName(artifact)

Description
modelName = padv.util.getModelName(artifact) returns the name of the model that
contains artifact.

Input Arguments
artifact — Artifact information
padv.Artifact object

Artifact information, specified as a padv.Artifact object.

You can create a padv.Artifact object either by:

• Running a built-in query. When you run a built-in query, the query returns either a
padv.Artifact object or an array of padv.Artifact objects.

• Using the padv.Artifact class.

Example:
padv.Artifact("sl_model_file",padv.util.ArtifactAddress(fullfile("02_Models",
"AHRS_Voter","specification","AHRS_Voter.slx")))

Output Arguments
modelName — Name of model that contains artifact
string

Name of model that contains artifact, returned as a string.

6 Utilities

6-10

padv.util.getProjectReferences
Get list of project references

Syntax
prjReferences = padv.util.getProjectReferences()
prjReferences = padv.util.getProjectReferences("reset")

Description
prjReferences = padv.util.getProjectReferences() gets a list of the project references for
the current project. The function caches the list.

prjReferences = padv.util.getProjectReferences("reset") resets the cached list of
project references.

Examples

Get List of Project References

Get a list of the project references for the current project.

Open the Process Advisor example for project references.

processAdvisorProjectReferenceExampleStart

Get the list of project references for the current project.

prjReferences = padv.util.getProjectReferences()

Output Arguments
prjReferences — Project references
ProjectReference object | array of ProjectReference objects

Project references, returned as a ProjectReference object or an array of ProjectReference
objects.

 padv.util.getProjectReferences

6-11

padv.util.getTestCaseID
Find ID for test case that contains artifact

Syntax
testCaseID = padv.util.getTestCaseID(artifact)

Description
testCaseID = padv.util.getTestCaseID(artifact) returns the ID for the test case that
contains artifact.

Examples

Find Test Case ID Associated with Artifact

Find the test case ID for a test case by using padv.util.getTestCaseID.

Open the Process Advisor example project. In the MATLAB Command Window, enter:

processAdvisorExampleStart

Create a query that can find the test cases in the project. Since test cases are part of a larger test file,
test cases are subfile artifacts and you must specify FilterSubFileArtifacts as false to stop
the query from filtering out the test cases.

q = padv.builtin.query.FindArtifacts(ArtifactType = "sl_test_case",...
FilterSubFileArtifacts = false);

Find the test cases in the project by running the query. The query returns the as an array of
padv.Artifact objects.

testCaseArtifacts = run(q);

Find the test case ID for one of the test cases returned by the query.

id = padv.util.getTestCaseID(testCaseArtifacts(1))

Input Arguments
artifact — Artifact information
padv.Artifact object

Artifact information, specified as a padv.Artifact object.

You can create a padv.Artifact object either by:

• Running a built-in query. When you run a built-in query, the query returns either a
padv.Artifact object or an array of padv.Artifact objects.

6 Utilities

6-12

• Using the padv.Artifact class.

Example:
padv.Artifact("sl_model_file",padv.util.ArtifactAddress(fullfile("02_Models",
"AHRS_Voter","specification","AHRS_Voter.slx")))

Output Arguments
testCaseID — ID for test case that contains artifact
string

ID for the test case that contains the artifact, returned as a string.

Version History

 padv.util.getTestCaseID

6-13

padv.util.mergeArtifactDatabases
Merge artifact database files

Syntax
padv.util.mergeArtifactDatabases(Base = baseFile, Branches = filesToMerge,
Merged = mergedFile)
padv.util.mergeArtifactDatabases(___ ,CheckOutdatedResults = false)

Description
padv.util.mergeArtifactDatabases(Base = baseFile, Branches = filesToMerge,
Merged = mergedFile) merges the artifact database files, filesToMerge, with the common
ancestor artifact database file, baseFile, to create a merged artifact database file mergedFile.

You can use this function to merge artifact database files from different feature branches or CI
pipeline jobs. The function requires an open project.

padv.util.mergeArtifactDatabases(___ ,CheckOutdatedResults = false) merges
without validating that task results are still up-to-date after the merge. Outdated results are not
expected if the merge is successful. If there are outdated results, there could be an issue with the
merge. By default, CheckOutdatedResults is true.

Note Only supported in R2023b Update 5 and later releases.

Examples

Merge Project Analysis from Different Feature Branches

Process Advisor and the build system are able to detect changes to project files and identify outdated
tasks by using the information in the artifact database file artifacts.dmr. When your team works
on a project with multiple feature branches, you might need to merge different versions of
artifacts.dmr into a single file that contains the latest project analysis. To create the file, you need
to save a copy of the base artifact database file and then merge the artifacts.dmr files from each
branch.

When your team members clone the project from source control, have them download the latest
derived files, including the artifacts.dmr file that contains the latest analysis of the project. By
default, digital thread stores the artifact database file inside the derived folder in the project root.

You can use a database or repository management tool to handle derived files effectively.

To resolve conflicts between the artifact database files from the different feature branches, you need
to create a base artifact database file. Use the most recent artifacts.dmr file from the derived files
as the base because that file represents the latest shared state of project analysis across the feature
branches.

Create a copy of the artifact database file inside the derived folder and name the file base.dmr.

6 Utilities

6-14

padv.util.saveArtifactDatabase(fullfile("derived","base.dmr"))

As each team member works on their separate branches, the digital thread updates the
artifacts.dmr file in their copy of the project to reflect their changes.

After a team member makes the changes on their branch, use the function
padv.util.saveArtifactDatabase in each branch to save a copy of the artifact database file
from that branch. For example, you might have artifact database files like featureA.dmr and
featureB.dmr.

Merge the artifact database files into a new artifacts.dmr file by using the function
padv.util.mergeArtifactDatabases. The base artifact database file is base.dmr and the
artifact database files from the branches are featureA.dmr and featureB.dmr.

padv.util.mergeArtifactDatabases(...
Base = fullfile("derived","base.dmr"),...
Branches = [fullfile("derived","featureA.dmr"), fullfile("derived","featureB.dmr")],...
Merged = fullfile("derived","artifacts.dmr"))

This section describes how to merge artifact database files from separate feature branches, but you
can also use these functions to merge artifact database files from jobs in CI and tasks that you run in
parallel. Starting in R2023b Update 5, GitHub and Jenkins pipelines that you generate by using the
function padv.pipeline.generatePipeline automatically merge artifact database files.

Input Arguments
baseFile — Path and name of base artifact database file
string

Path and name of base artifact database file, specified as a string.

The base artifact database file is the common ancestor of the artifact database files that you want to
merge. The path must be relative to the project root or an absolute path.

To create a common ancestor, you can save a copy of an artifact database file by using the function
padv.util.saveArtifactDatabase.
Example: fullfile("derived", "base.dmr")
Data Types: string

filesToMerge — Paths and names of artifact database files to merge
string array

Paths and names of artifact database files that you want to merge, specified as a string array.
Example: [fullfile("derived", "modelA.dmr"), fullfile("derived", "modelB.dmr")]
Data Types: string

mergedFile — Path and name of merged artifact database file
string

Path and name of merged artifact database file, specified as a string.

The path must be relative to the project root or an absolute path.

 padv.util.mergeArtifactDatabases

6-15

Example: fullfile("derived", "artifacts.dmr")
Data Types: string

Version History
Introduced in R2023b

6 Utilities

6-16

padv.util.refreshProcessModel
Refresh process model data

Syntax
padv.util.refreshProcessModel()

Description
padv.util.refreshProcessModel() refreshes the process model. Use this function if you need to
manually refresh the process model data.

Examples

Refresh Process Model

Make a change to a project and programmatically refresh the process model data.

Open the example project for Process Advisor.

processAdvisorExampleStart

The AHRS_Voter model opens.

Make a change to the AHRS_Voter model and re-save the model.

The warning banner in Process Advisor shows that the process model data needs to be refreshed.

Programmatically refresh the process model data by using padv.util.refreshProcessModel.

padv.util.refreshProcessModel

 padv.util.refreshProcessModel

6-17

padv.util.saveArtifactDatabase
Save copy of artifact database file

Syntax
padv.util.saveArtifactDatabase(destination)

Description
padv.util.saveArtifactDatabase(destination) saves a copy of the artifact database file in
the destination specified by destination.

The artifact database file, artifacts.dmr, is saved in the derived folder in the project root. This
file tracks the project artifacts and their dependencies. Manually copying this file can lead to
inconsistencies or incorrect behavior due to pending artifact changes.

You can use this function to create base artifact database files and save copies of artifact database
files from different feature branches or CI pipeline jobs.

The function requires an open project.

Note Only supported in R2023b Update 5 and later releases.

Examples

Merge Project Analysis from Different Feature Branches

Process Advisor and the build system are able to detect changes to project files and identify outdated
tasks by using the information in the artifact database file artifacts.dmr. When your team works
on a project with multiple feature branches, you might need to merge different versions of
artifacts.dmr into a single file that contains the latest project analysis. To create the file, you need
to save a copy of the base artifact database file and then merge the artifacts.dmr files from each
branch.

When your team members clone the project from source control, have them download the latest
derived files, including the artifacts.dmr file that contains the latest analysis of the project. By
default, digital thread stores the artifact database file inside the derived folder in the project root.

You can use a database or repository management tool to handle derived files effectively.

To resolve conflicts between the artifact database files from the different feature branches, you need
to create a base artifact database file. Use the most recent artifacts.dmr file from the derived files
as the base because that file represents the latest shared state of project analysis across the feature
branches.

Create a copy of the artifact database file inside the derived folder and name the file base.dmr.

padv.util.saveArtifactDatabase(fullfile("derived","base.dmr"))

6 Utilities

6-18

As each team member works on their separate branches, the digital thread updates the
artifacts.dmr file in their copy of the project to reflect their changes.

After a team member makes the changes on their branch, use the function
padv.util.saveArtifactDatabase in each branch to save a copy of the artifact database file
from that branch. For example, you might have artifact database files like featureA.dmr and
featureB.dmr.

Merge the artifact database files into a new artifacts.dmr file by using the function
padv.util.mergeArtifactDatabases. The base artifact database file is base.dmr and the
artifact database files from the branches are featureA.dmr and featureB.dmr.

padv.util.mergeArtifactDatabases(...
Base = fullfile("derived","base.dmr"),...
Branches = [fullfile("derived","featureA.dmr"), fullfile("derived","featureB.dmr")],...
Merged = fullfile("derived","artifacts.dmr"))

This section describes how to merge artifact database files from separate feature branches, but you
can also use these functions to merge artifact database files from jobs in CI and tasks that you run in
parallel. Starting in R2023b Update 5, GitHub and Jenkins pipelines that you generate by using the
function padv.pipeline.generatePipeline automatically merge artifact database files.

Input Arguments
destination — File destination
string

File destination for copied artifact database file, specified as a string.

The path must be relative to the project root or an absolute path and must include the .dmr
extension.
Example: fullfile("derived", "base.dmr")
Data Types: string

Version History
Introduced in R2023b

 padv.util.saveArtifactDatabase

6-19

padv.util.unpackExternalCodeCache
Unpack code generation target from Simulink cache files

Syntax
padv.util.unpackExternalCodeCache(cacheFiles)

Description
padv.util.unpackExternalCodeCache(cacheFiles) unpacks the code generation target from
the Simulink cache files, cacheFiles.

An external code cache allows your team to generate code in parallel while maintaining up-to-date
task results. For information on parallel code generation, see the GenerateExternalCodeCache
property for the built-in task padv.builtin.task.GenerateCode.

If your team generates code in parallel by generating an external code cache, downstream tasks that
depend on the generated code need to unpack the generated code target before running the task
action. Built-in tasks that depend on generated code, like
padv.builtin.task.AnalyzeModelCode, unpack the code generation target by using the utility
function padv.util.unpackExternalCodeCache.

Examples

Unpack Code Generation Target

Generate and unpack code generation target.

Open the parallel code generation example.

processAdvisorParallelExampleStart

Generate code by running a code generation task iteration. For example, run the code generation
task on the reference model OuterLoop_Control.

runprocess(Tasks = "padv.builtin.task.GenerateCode", ...
 FilterArtifact = fullfile("02_Models","OuterLoop_Control", ...
 "specification","OuterLoop_Control.slx"));

Find the external code cache file by using the built-in query.

q = padv.builtin.query.FindExternalCodeCache;
artifactsArray = run(q);

Unpack the cache file.

6 Utilities

6-20

padv.util.unpackExternalCodeCache(artifactsArray);

Input Arguments
cacheFiles — Address for external code cache files
array of padv.Artifact objects | cell array of character vectors | string array

Absolute or relative address for external code cache files, specified as either an array of
padv.Artifact objects, a cell array of character vectors, or a string array.

The built-in code generation task, padv.builtin.task.GenerateCode, generates these cache files
when you specify the task property GenerateExternalCodeCache as true.

The files must be:

• .slxc.bk files
• compatible with the slxcunpack function
• inside the project root folder

 padv.util.unpackExternalCodeCache

6-21

Process Advisor Example Projects

The support package includes example projects that you can use to try the Process Advisor app and
build system. If you use GitHub, GitLab, or Jenkins, you can use the examples for those specific CI
platforms to see example pipeline configuration files and example Dockerfiles.

Example projects:

• processAdvisorExampleStart
• processAdvisorGitHubExampleStart
• processAdvisorGitLabExampleStart
• processAdvisorJenkinsExampleStart
• processAdvisorProjectReferenceExampleStart

7

processAdvisorExampleStart
Set up Process Advisor example project

Syntax
processAdvisorExampleStart
processAdvisorExampleStart(Name=Value)

Description
processAdvisorExampleStart sets up a Process Advisor example project. The function creates a
new copy of the Process Advisor example project and automatically opens the Process Advisor app on
the model AHRS_Voter.

processAdvisorExampleStart(Name=Value) sets up a Process Advisor example project using
the specified options.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example: processAdvisorExampleStart(ProjectFolder = "exampleProject")

CI — Add pipeline configuration file for specific CI platform
"" (default) | "github" | "gitlab" | "jenkins"

Add pipeline configuration file for a specific CI platform, specified as:

• "github" — for GitHub
• "gitlab" — for GitLab (same as calling processAdvisorGitLabExampleStart)
• "jenkins" — for Jenkins (same as calling processAdvisorJenkinsExampleStart)

By default, the function does not add any pipeline configuration files to the example project.

To configure the pipeline configuration file to use automatic pipeline generation, use the argument
PipelineGen.
Example: processAdvisorExampleStart(CI="jenkins")
Data Types: string

PipelineGen — Configure pipeline configuration file to use automatic pipeline generation
true or 1 (default) | false or 0

Configure the pipeline configuration file to use automatic pipeline generation, specified as a numeric
or logical 0 (false) or 1 (true).

7 Process Advisor Example Projects

7-2

Example: processAdvisorExampleStart(CI = "github", PipelineGen = false)
Data Types: logical

IncludeDockerFile — Add example Dockerfile to project
true or 1 (default) | false or 0

Add an example Dockerfile to the project, specified as a numeric or logical 0 (false) or 1 (true).

By default, the function adds an example Dockerfile named Dockerfile to the project root. You can
use the example Dockerfile to create a Docker image that includes MATLAB, other MathWorks®

products, and the CI/CD Automation for Simulink Check™ support package.

For more information on Dockerfiles, see "Create Docker Container for Support Package" in the
User's Guide PDF.
Example: processAdvisorExampleStart(IncludeDockerFile = false)
Data Types: logical

ProjectFolder — Folder to download project into
"" (default) | string

Folder to download project into, specified as a string.

By default, the function does not create a parent folder for the project.
Example: processAdvisorExampleStart(ProjectFolder = "exampleProject")
Data Types: string

 processAdvisorExampleStart

7-3

processAdvisorGitHubExampleStart
Set up Process Advisor example for GitHub

Syntax
processAdvisorGitHubExampleStart

Description
processAdvisorGitHubExampleStart sets up Process Advisor example for GitHub (same as
processAdvisorExampleStart(CI = "github", PipelineGen = false)).

The example includes a pipeline configuration file that can automatically generate a pipeline for
GitHub.

7 Process Advisor Example Projects

7-4

processAdvisorGitLabExampleStart
Set up Process Advisor example for GitLab

Syntax
processAdvisorGitLabExampleStart

Description
processAdvisorGitLabExampleStart sets up Process Advisor example for GitLab (same as
processAdvisorExampleStart(CI="gitlab")).

The example includes a pipeline configuration file that can automatically generate a pipeline for
GitLab.

 processAdvisorGitLabExampleStart

7-5

processAdvisorJenkinsExampleStart
Set up Process Advisor example for Jenkins

Syntax
processAdvisorJenkinsExampleStart

Description
processAdvisorJenkinsExampleStart sets up Process Advisor example for Jenkins (same as
processAdvisorExampleStart(CI="jenkins")).

The example includes a pipeline configuration file that can automatically generate a pipeline for
GitLab. You need to update the example Jenkinsfile to specify the bin directory for your MATLAB
installation and the Git branch, credentials, and URL for your repository.

7 Process Advisor Example Projects

7-6

processAdvisorProjectReferenceExampleStart
Set up Process Advisor example that uses project references

Syntax
processAdvisorProjectReferenceExampleStart

Description
processAdvisorProjectReferenceExampleStart sets up a Process Advisor example project
that uses project references.

 processAdvisorProjectReferenceExampleStart

7-7

Artifact Types

The build system uses artifact types to identify and categorize the different file types and modeling
constructs in your project.

You can use an artifact type to find specific types of artifacts in your project:

% Find model files in the project by using the artifact type "sl_model_file"
q = padv.builtin.query.FindArtifacts(ArtifactType="sl_model_file");
results = run(q);
results.Address

You can also use an artifact type to create a padv.Artifact object that represents a specific artifact
and run tasks associated with that artifact:

% specify the relative path to the model AHRS_Voter
model = padv.Artifact("sl_model_file",...
padv.util.ArtifactAddress(...
fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")));

% run only the tasks for the AHRS_Voter model
runprocess(FilterArtifact = model)

The following table lists the valid artifact types.

Artifact Type Description
"harness_info_file" Harness info file
"m_class" MATLAB class
"m_file" MATLAB file
"m_func" MATLAB function
"m_method" MATLAB class method
"m_property" MATLAB class property
"ma_config_file" Model Advisor configuration file
"ma_justification_file" Model Advisor justification file
"other_file" Other file
"padv_output_file" Process Advisor output file
"sf_chart" Stateflow® chart
"sf_graphical_fcn" Stateflow graphical function
"sf_group" Stateflow group
"sf_state" Stateflow state
"sf_state_transition_chart" Stateflow state transition chart
"sf_truth_table" Stateflow truth table
"sl_block_diagram" Block diagram
"sl_data_dictionary_file" Data dictionary file

8

Artifact Type Description
"sl_embedded_matlab_fcn" MATLAB function
"sl_harness_block_diagram" Harness block diagram
"sl_harness_file" Test harness file
"sl_library_file" Library file
"sl_model_file" Simulink model file
"sl_protected_model_file" Protected Simulink model file
"sl_req_table" Requirements Table
"sl_subsystem" Subsystem
"sl_subsystem_file" Subsystem file
"sl_test_case" Simulink Test™ case
"sl_test_case_result" Simulink Test case result
"sl_test_file" Simulink Test file
"sl_test_iteration" Simulink Test iteration
"sl_test_iteration_result" Simulink Test iteration result
"sl_test_report_file" Simulink Test result report
"sl_test_result_file" Simulink Test result file
"sl_test_resultset" Simulink Test result set
"sl_test_seq" Test Sequence
"sl_test_suite" Simulink Test suite
"sl_test_suite_result" Simulink Test suite result
"zc_block_diagram" System Composer™ architecture
"zc_component" System Composer architecture component
"zc_file" System Composer architecture file

8 Artifact Types

8-2

Tokens

The default process model and built-in task source code use the following tokens as placeholders for
dynamic path resolution of artifacts, directories and other information relevant to the process:

Token Description
$INPUTARTIFACT$ Input artifact for task
$ITERATIONARTIFACT$ Current artifact that the task is acting on
PWD Current working directory
$TIMESTAMP$ Current date and time in the format

'yyyy_mm_dd_HH_MM_ss'
$PROJECTROOT$ Root folder of project
$TASKNAME$ Task name or title
$DEFAULTOUTPUTDIR$ Default output directory for the process model
$ROOTITERATIONARTIFACT$ Root-level artifact for the iteration artifact

You can use these tokens in your process model, but note that:

• The output directory of a task cannot be specified as $PROJECTROOT$.
• The tokens PWD and $TIMESTAMP$ are not supported by the pipeline generator.

9

Built-In Task Library

The support package CI/CD Automation for Simulink Check contains several built-in tasks that you
can use when you define your process. You can reconfigure the tasks in the process model to change
the task behavior. After you install the support package, you can view the source code files for the
built-in tasks. In the MATLAB Command Window, enter:

cd(fullfile(matlabshared.supportpkg.getSupportPackageRoot,...
"toolbox","padv","build_service","ml","+padv","+builtin","+task"))

The built-in tasks include tasks for generating model reports, performing model analysis, running
tests, generating code, and analyzing code:

Goal Task Title Task Instance Requires
License

Requires
Display*

Model
Reports

Generate
SDD Report

padv.builtin.task.GenerateSDDReport Simulink
Report
Generator™

✔

Generate
Simulink
Web View

padv.builtin.task.GenerateSimulinkWebView ✔

Generate
Model
Comparison

padv.builtin.task.GenerateModelComparison Simulink ✔

Model
Analysis

Check
Modeling
Standards

padv.builtin.task.RunModelStandards Simulink
Check

Detect
Design
Errors

padv.builtin.task.DetectDesignErrors Simulink
Design
Verifier™

Testing and
Coverage

Merge Test
Results

padv.builtin.task.MergeTestResults Simulink
Test

Run Tests padv.builtin.task.RunTestsPerModel
Run Tests padv.builtin.task.RunTestsPerTestCase

Code
Generation

Generate
Code

padv.builtin.task.GenerateCode Embedded
Coder®

Code
Analysis

Check
Coding
Standards or
Prove Code
Quality

padv.builtin.task.AnalyzeModelCode Polyspace®

Bug
Finder™ or
Polyspace
Code
Prover™

Inspect Code padv.builtin.task.RunCodeInspection Simulink
Code
Inspector™

10

*Built-in tasks that require a display might generate an error if there is no display available. If you
run MATLAB using the -nodisplay option or you use a machine that does not have a display (like
many CI runners and Docker containers), you should set up a virtual display server on that machine
before you run the tasks. For information, see "Set Up Virtual Display for No-Display Machine" in the
User's Guide.

Reference pages for the built-in task are listed alphabetically on the following pages:

• “Check Coding Standards or Prove Code Quality” on page 10-3
• “Check Modeling Standards” on page 10-11
• “Detect Design Errors” on page 10-17
• “Generate Code” on page 10-20
• “Generate Model Comparison” on page 10-23
• “Generate SDD Report” on page 10-26
• “Generate Simulink Web View” on page 10-30
• “Inspect Code” on page 10-33
• “Merge Test Results” on page 10-35
• “Run Tests (per model)” on page 10-40
• “Run Tests (per test case)” on page 10-44

10 Built-In Task Library

10-2

Check Coding Standards or Prove Code Quality
An instance of this built-in task can be configured to either:

• Check Coding Standards (default) — Quickly analyze generated model code for many types of
run-time defects, coding standards, and code metrics by usingPolyspace Bug Finder.

• Prove Code Quality — Check every operation in your code for a set of possible run-time errors
and try to prove the absence of the error for all execution paths by using Polyspace Code Prover.
For information, see "Advanced - Polyspace Code Prover Option" and "Perform Code Prover
Verification" in this PDF.

Note You can use both Bug Finder and Code Prover in your software development workflow. For
information on how to include both a Bug Finder task and a Code Prover task in your process model,
see "Check Coding Standards and Prove Code Quality" in this PDF.

For information on the differences between Bug Finder and Code Prover, see https://
www.mathworks.com/help/bugfinder/gs/use-bug-finder-and-code-prover.html.

This task runs on the generated model code, iterating over either each model in the project or the
project itself. If a model does not have generated code, the task skips the model and displays a
warning message.

Optionally, you can have the task automatically upload results to Polyspace Access™ so that your
team can review the results in the Polyspace Access web interface. For information, see "Advanced -
Polyspace Access Configuration Options" and "Upload to Polyspace Access" in this PDF.

Task Instance Task Title in Process Advisor
padv.builtin.task.AnalyzeModelCode Check Coding Standards or Prove

Code Quality

Note Starting in R2023b, this task is not supported on macOS (Apple silicon).

Prerequisites
• This task requires that your Polyspace installation is integrated with MATLAB and Simulink. If you

have not already integrated your installation, use the function polyspacesetup. For information,
see https://www.mathworks.com/help/bugfinder/ug/integrate-polyspace-with-matlab-and-
simulink.html.

• If you start MATLAB with the -batch option, the task requires a Polyspace server product. The
required server product depends on the task configuration:

• Check Coding Standards (default) — Requires the Polyspace Bug Finder Server™ product.
• Prove Code Quality — Requires the Polyspace Code Prover Server product.

 Check Coding Standards or Prove Code Quality

10-3

https://www.mathworks.com/help/bugfinder/gs/use-bug-finder-and-code-prover.html
https://www.mathworks.com/help/bugfinder/gs/use-bug-finder-and-code-prover.html
https://www.mathworks.com/help/bugfinder/ug/integrate-polyspace-with-matlab-and-simulink.html
https://www.mathworks.com/help/bugfinder/ug/integrate-polyspace-with-matlab-and-simulink.html

Add Task to Process
Use the addTask function to add the task to the process model. The following code uses the exist
function to check if Polyspace is installed and integrated before attempting to add the task to the
process model:

psTask = addTask(pm, padv.builtin.task.AnalyzeModelCode);

If you want to have one task instance that uses Bug Finder and another task instance that uses Code
Prover, see "Check Coding Standards and Prove Code Quality" in this PDF.

Reconfigure Task
You can change how a task performs an action by setting the properties of the task object.

For padv.builtin.task.AnalyzeModelCode task objects, the properties include:

Polyspace Options

Property Description
TreatAsRefModel By default, the task automatically identifies

whether a model is a top model or a reference
model before analyzing the model code. But you
can specify TreatAsRefModel as true or
false if you want to override the behavior and
only analyze reference model code or top model
code.

Default: ""
ResultDir Directory where build system stores results from

analyzing model code

Default: fullfile('$DEFAULTOUTPUTDIR$',
'$ITERATIONARTIFACT$', 'ps_results')

Reports Reports output by the task

Default: ["BugFinderSummary"
"CodingStandards"]

ReportPath Path to reports output by the task

Default:
string(fullfile('$DEFAULTOUTPUTDIR$',
'$ITERATIONARTIFACT$', 'ps_results'))

ReportFormat Format of output reports

Default: "PDF"
ReportNames Names of output reports

Default: ["$ITERATIONARTIFACT
$_BugFinderSummary"
"$ITERATIONARTIFACT$_CodingStandards"]

10 Built-In Task Library

10-4

Advanced - Polyspace Code Prover Option

Property Description
VerificationMode Polyspace mode, specified as either:

• "BugFinder" — Perform Bug Finder analysis.
• "CodeProver" — Perform Code Prover
verification. For information, see "Perform
Code Prover Verification" in this PDF.

Default:"BugFinder"

Advanced - Polyspace Analysis Options

Property Description
Batch Option to run analysis on server (-batch)

Default: false
Scheduler Specify cluster or job scheduler (-scheduler)

Default: string.empty

Advanced - Polyspace Project Options

Property Description
SavePsPrjFileAfterAnalysis Save Polyspace project file after analyzing model

code

Default: 1
PsPrjFileName Polyspace project file path

Default: "$ITERATIONARTIFACT
$_BugFinder"

 Check Coding Standards or Prove Code Quality

10-5

Advanced - Polyspace Access Configuration Options

Property Description
PsAccessEnable Enable task to upload Bug Finder analysis results

to Polyspace Access, specified as a numeric or
logical 1 (true) or 0 (false).

Note If you specify PsAccessEnable as true,
you must also specify values for the other
Polyspace Access Configuration Options. For
information, see "Upload to Polyspace Access".

Default: false
PsAccessHostName Polyspace Access machine host name, specified

as a string. You can find the host name in the
URL of the Polyspace Access interface, for
example, https://hostname:port/metrics/
index.html.

Default: ""
PsAccessPortNumber Polyspace Access port, specified as a string. You

can find the port number in the URL of the
Polyspace Access interface, for example,
https://hostname:portNumber/metrics/
index.html.

Default: "9443"
PsAccessProtocol HTTP protocol used to access Polyspace Access,

specified as either "http" or "https".

Default: "https"
PsAccessCredentialsFile Full path to text file where you store your login

credentials for Polyspace Access, specified as a
string.

A credentials file is useful if you do not want to
store your credentials in your process model. For
information on how to create a credentials file,
see https://www.mathworks.com/help/
bugfinder/ref/
polyspaceaccess.html#mw_b91d7771-6fdf-4deb-8
bf2-3e67252cce00.

Alternatively, you can specify an API key
(PsAccessApiKey) or a username and password
(PsAccessUserName and
PsAccessEncryptedPassword) to pass your
credentials to Polyspace Access.

Default: string.empty

10 Built-In Task Library

10-6

https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_b91d7771-6fdf-4deb-8bf2-3e67252cce00
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_b91d7771-6fdf-4deb-8bf2-3e67252cce00
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_b91d7771-6fdf-4deb-8bf2-3e67252cce00
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_b91d7771-6fdf-4deb-8bf2-3e67252cce00

Property Description
PsAccessApiKey API key for Polyspace Access, specified as a

string.

For information on API keys and how to assign an
API key to a user, see the login options:
https://www.mathworks.com/help/bugfinder/ref/
polyspaceaccess.html#mw_595ad91b-5f80-4a87-
b6e9-fecf45ce663c.

Alternatively, you can use a credentials file
(PsAccessCredentialsFile) or a username
and password (PsAccessUserName and
PsAccessEncryptedPassword) to pass your
credentials to Polyspace Access.

Default: string.empty
PsAccessUserName Username for Polyspace Access, specified as a

string.

For information on login credentials, see the
login options: https://www.mathworks.com/
help/bugfinder/ref/
polyspaceaccess.html#mw_595ad91b-5f80-4a87-
b6e9-fecf45ce663c.

Alternatively, you can use a credentials file
(PsAccessCredentialsFile) or an API key
(PsAccessApiKey) to pass your credentials to
Polyspace Access.

Default: ""
PsAccessEncryptedPassword Password for Polyspace Access, specified as a

string.

For information on login credentials, see the
login options: https://www.mathworks.com/
help/bugfinder/ref/
polyspaceaccess.html#mw_595ad91b-5f80-4a87-
b6e9-fecf45ce663c.

Alternatively, you can use a credentials file
(PsAccessCredentialsFile) or an API key
(PsAccessApiKey) to pass your credentials to
Polyspace Access.

Default: ""

 Check Coding Standards or Prove Code Quality

10-7

https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_595ad91b-5f80-4a87-b6e9-fecf45ce663c
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_595ad91b-5f80-4a87-b6e9-fecf45ce663c
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_595ad91b-5f80-4a87-b6e9-fecf45ce663c
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_595ad91b-5f80-4a87-b6e9-fecf45ce663c
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_595ad91b-5f80-4a87-b6e9-fecf45ce663c
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_595ad91b-5f80-4a87-b6e9-fecf45ce663c
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_595ad91b-5f80-4a87-b6e9-fecf45ce663c
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_595ad91b-5f80-4a87-b6e9-fecf45ce663c
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_595ad91b-5f80-4a87-b6e9-fecf45ce663c
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_595ad91b-5f80-4a87-b6e9-fecf45ce663c
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_595ad91b-5f80-4a87-b6e9-fecf45ce663c

Property Description
PsAccessParentFolder Path of parent folder in Polyspace Access

explorer under which you store uploaded results,
specified as a string.

For more information, see the upload options:
https://www.mathworks.com/help/bugfinder/ref/
polyspaceaccess.html#mw_80702b90-6802-4aad-
9447-291610be4807

Default: ""
PsAccessResultsName Name of uploaded results in Polyspace Access

explorer, specified as a string.

For more information, see the upload options:
https://www.mathworks.com/help/bugfinder/ref/
polyspaceaccess.html#mw_80702b90-6802-4aad-
9447-291610be4807

Default: ""

Perform Code Prover Verification

If you have a Polyspace Code Prover license, you can reconfigure the task to check every operation in
your code for a set of possible run-time errors and try to prove the absence of the error for all
execution paths.

To reconfigure the task, specify the VerificationMode property as "CodeProver". For example:

psTask = pm.addTask(padv.builtin.task.AnalyzeModelCode);
psTask.Title = "Prove Code Quality";
psTask.VerificationMode = "CodeProver";

This code specifies a value for the Title property since the default task title is "Check Coding
Standards". You can use the other task properties to specify the report templates and other task
settings.

Check Coding Standards and Prove Code Quality

You can use both Bug Finder and Code Prover in your software development workflow.

Both Polyspace Bug Finder and Polyspace Code Prover detect run-time errors through static analysis.

• Bug Finder quickly analyzes your code and detects many types of defects.
• Code Prover checks every operation in your code for a set of possible run-time errors and try to

prove the absence of the error for all execution paths.

To include both a Bug Finder task and a Code Prover task in your process model, you must add two
separate instances of the built-in task padv.builtin.task.AnalyzeModelCode to the process
model. Each instance needs a unique value for the Name property. Use the VerificationMode
property to specify whether the task uses Bug Finder (default) or Code Prover ("CodeProver"). You
can use the other task properties to specify the report templates and other task settings.

For example:

10 Built-In Task Library

10-8

https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_80702b90-6802-4aad-9447-291610be4807
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_80702b90-6802-4aad-9447-291610be4807
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_80702b90-6802-4aad-9447-291610be4807
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_80702b90-6802-4aad-9447-291610be4807
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_80702b90-6802-4aad-9447-291610be4807
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_80702b90-6802-4aad-9447-291610be4807

%% Check Coding Standards with Polyspace Bug Finder
psbfTask = pm.addTask(padv.builtin.task.AnalyzeModelCode());
% Report Options
psbfTask.ResultDir = fullfile(defaultResultPath,"bug_finder");
psbfTask.ReportPath = fullfile(defaultResultPath,"bug_finder");

%% Prove Code Quality with Polyspace Code Prover
pscpTask = pm.addTask(padv.builtin.task.AnalyzeModelCode(Name="ProveCodeQuality"));
pscpTask.Title = "Prove Code Quality";
pscpTask.VerificationMode = "CodeProver";
% Report Options
pscpTask.ResultDir = string(fullfile(defaultResultPath,"code_prover"));
pscpTask.Reports = ["Developer", "CallHierarchy", "VariableAccess"];
pscpTask.ReportPath = string(fullfile(defaultResultPath,"code_prover"));
pscpTask.ReportNames = [...
 "$ITERATIONARTIFACT$_Developer", ...
 "$ITERATIONARTIFACT$_CallHierarchy", ...
 "$ITERATIONARTIFACT$_VariableAccess"];

Note that this code specifies different result directories and report paths for each task to prevent the
task outputs from overwriting each other.

For information on:

• Differences between Bug Finder and Code Prover, see: https://www.mathworks.com/help/
bugfinder/gs/use-bug-finder-and-code-prover.html

• How Bug Finder and Code Prover fit into a software development workflow, see: https://
www.mathworks.com/help/bugfinder/gs/workflow-using-both-polyspace-bug-finder-and-polyspace-
code-prover.html

Upload to Polyspace Access

If you have a Polyspace Access license, you can reconfigure this task to automatically upload results
to Polyspace Access for your team to review.

Before you reconfigure the task, make sure that you have performed this one-time setup: https://
www.mathworks.com/help/bugfinder/gs/run-bug-finder-on-
server.html#mw_c7a5eb97-7327-4f99-9717-77773d462d8b

To reconfigure the task, update your process model to specify the property PsAccessEnable as
true and to specify values for these properties:

• PsAccessHostName
• PsAccessPortNumber
• PsAccessProtocol
• PsAccessParentFolder
• And one of the following sets of credentials:

• PsAccessCredentialsFile
• PsAccessApiKey
• PsAccessUserName and PsAccessEncryptedPassword

For example:

 Check Coding Standards or Prove Code Quality

10-9

https://www.mathworks.com/help/bugfinder/gs/use-bug-finder-and-code-prover.html
https://www.mathworks.com/help/bugfinder/gs/use-bug-finder-and-code-prover.html
https://www.mathworks.com/help/bugfinder/gs/workflow-using-both-polyspace-bug-finder-and-polyspace-code-prover.html
https://www.mathworks.com/help/bugfinder/gs/workflow-using-both-polyspace-bug-finder-and-polyspace-code-prover.html
https://www.mathworks.com/help/bugfinder/gs/workflow-using-both-polyspace-bug-finder-and-polyspace-code-prover.html
https://www.mathworks.com/help/bugfinder/gs/run-bug-finder-on-server.html#mw_c7a5eb97-7327-4f99-9717-77773d462d8b
https://www.mathworks.com/help/bugfinder/gs/run-bug-finder-on-server.html#mw_c7a5eb97-7327-4f99-9717-77773d462d8b
https://www.mathworks.com/help/bugfinder/gs/run-bug-finder-on-server.html#mw_c7a5eb97-7327-4f99-9717-77773d462d8b

%% Check coding standards
if includeGenerateCodeTask && includeAnalyzeModelCode
 psTask = pm.addTask(padv.builtin.task.AnalyzeModelCode());
 psTask.addInputQueries(padv.builtin.query.FindFileWithAddress(...
 Type = "ps_prj_file",...
 Path = fullfile("tools","CodingRulesOnly_config.psprj")));
 psTask.ResultDir = string(fullfile("$DEFAULTOUTPUTDIR$", ...
 "$ITERATIONARTIFACT$","coding_standards"));
 psTask.Reports = "CodingStandards";
 psTask.ReportPath = string(fullfile("$DEFAULTOUTPUTDIR$", ...
 "$ITERATIONARTIFACT$","coding_standards"));
 psTask.ReportNames = "$ITERATIONARTIFACT$_CodingStandards";
 psTask.ReportFormat = "PDF";

 % Polyspace Access configuration options
 psTask.PsAccessEnable = true;
 psTask.PsAccessHostName = "my-polyspace-access";
 psTask.PsAccessPortNumber = "9443";
 psTask.PsAccessProtocol = "https";
 psTask.PsAccessCredentialsFile = "C:\Users\username\myCredentials.txt";
 psTask.PsAccessParentFolder = "public/myProject";
 psTask.PsAccessResultsName = "$ITERATIONARTIFACT$_CodingStandards";

end

This code uses a credentials file, myCredentials.txt, to pass credentials to Polyspace Access, but
you can also use an API key or a username and password. For information on how to generate and
maintain credentials for Polyspace Access, see https://www.mathworks.com/help/bugfinder/ref/
polyspaceaccess.html#mw_595ad91b-5f80-4a87-b6e9-fecf45ce663c.

For information on these properties, see the "Advanced - Polyspace Access Configuration Options" in
the previous section.

For information on Polyspace Access, see:

• https://www.mathworks.com/help/bugfinder/gs/send-polyspace-analysis-from-desktop-to-remote-
server.html

• https://www.mathworks.com/help/bugfinder/gs/run-bug-finder-on-server.html

Source Code
To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.AnalyzeModelCode

10 Built-In Task Library

10-10

https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_595ad91b-5f80-4a87-b6e9-fecf45ce663c
https://www.mathworks.com/help/bugfinder/ref/polyspaceaccess.html#mw_595ad91b-5f80-4a87-b6e9-fecf45ce663c
https://www.mathworks.com/help/bugfinder/gs/send-polyspace-analysis-from-desktop-to-remote-server.html
https://www.mathworks.com/help/bugfinder/gs/send-polyspace-analysis-from-desktop-to-remote-server.html
https://www.mathworks.com/help/bugfinder/gs/run-bug-finder-on-server.html

Check Modeling Standards
This task uses the Model Advisor to check your models for modeling conditions and configuration
settings that cause inaccurate or inefficient simulation of the system that the model represents.
Running model standards checking can also help you verify compliance with industry standards and
guidelines.

You can configure this task to specify which model standards the task runs. For example, you can
specify a Model Advisor configuration file or list of check identifiers to include in the Model Advisor
analysis. If you do not specify which model standards to run, the task runs a subset of high-integrity
systems checks by default.

Task Instance Task Title in Process Advisor
padv.builtin.task.RunModelStandards Check Modeling Standards

Add Task to Process
Use the addTask function to add the task to the process model:

 maTask = addTask(pm,padv.builtin.task.RunModelStandards);

Reconfigure Task
You can change certain task behaviors by setting the property values for the task object or by adding
inputs to the task.

Change Property Values

You can change certain task behaviors by setting the properties of the task object. For example, if you
want to specify a list of Model Advisor checks for the task to run, you can modify the CheckIDList
property of the task object maTask:

 maTask.CheckIDList = {'mathworks.jmaab.db_0032',...
 'mathworks.jmaab.jc_0281'};

Note If you want the task to use a Model Advisor configuration file or Model Advisor justification file,
you do not need to change any property values, but you do need to add those files as inputs to the
task. When you provide a file as an input to the task, the task can use the file, recognize changes to
the file, and update the task status as needed. For information, see the sections "Use Model Advisor
Configuration File" and "Use Model Advisor Justification File".

For padv.builtin.task.RunModelStandards task objects, the properties include:

 Check Modeling Standards

10-11

Property Description
CheckIDList List of unique identifiers for the Model Advisor

checks, specified as a character vector, or cell
array of character vectors. For example,
{'mathworks.jmaab.db_0032','mathworks.
jmaab.jc_0281'}.

Note If you specify CheckIDList and add a
Model Advisor configuration file as an input for
the task, the task runs Model Advisor using the
Model Advisor configuration file and ignores the
list of check IDs.

Default: <missing>
DisplayResults Report display setting for the Model Advisor,

specified as either:

• "Summary" — Display summary of the system
results in the Command Window

• "Details" — Display a summary of the
system results and the pass and fail results for
each check on each system

• "None" — Display no information in the
Command Window

Default: "Summary"
ExtensiveAnalysis Extensive analysis setting for the Model Advisor,

specified as either:

• "off" — Model Advisor only runs checks in
your configuration that do not trigger
extensive analysis

• "on" — Model Advisor runs each check in
your Model Advisor configuration file,
including checks that trigger extensive
analysis with tools like Simulink Design
Verifier

Default: "on"
Force Force delete modeladvisor/system folders,

specified as either:

• "off" — Prompt you before removing
existing modeladvisor/system folders

• "on" — Automatically removes existing
modeladvisor/system folders

Default: "on"

10 Built-In Task Library

10-12

Property Description
ParallelMode Parallel execution setting for the Model Advisor,

specified as "off" or "on".

Default: "off"
ReportFormat Format of the generated report, specified as

either:

• "html" — HTML format
• "docx" — Microsoft Word document format

Default: "html"
ReportName Prefix for the Model Advisor report file name,

specified as a character vector. An underscore
and the model name, "_modelName", are
appended to the report file name.

Default: "$ITERATIONARTIFACT
$_ModelAdvisor"

ReportPath Folder for the generated report, specified as a
character vector.

Default:
string(fullfile('$DEFAULTOUTPUTDIR$',
'$ITERATIONARTIFACT$',
'model_standards'))

ShowExclusions Exclusion display setting for the report, specified
as either:

• "off" — Report does not list Model Advisor
check exclusions

• "on" — Report lists Model Advisor check
exclusions

Default: "on"
TempDir Temporary working folder setting for the Model

Advisor, specified as either:

• "off" — Run Model Advisor in the current
working folder

• "on" — Run Model Advisor from a temporary
working folder to avoid concurrency issues
when running using a parallel pool

Default: "off"

The task uses these properties to specify input arguments for the function ModelAdvisor.run. For
more information on the arguments, see the Simulink Check documentation for ModelAdvisor.run:
https://www.mathworks.com/help/slcheck/ref/modeladvisor.run.html.

 Check Modeling Standards

10-13

https://www.mathworks.com/help/slcheck/ref/modeladvisor.run.html

Use Model Advisor Configuration File

By default, the Check Modeling Standards task runs a subset of high-integrity checks. If you want
the task to run the Model Advisor checks specified by the Model Advisor configuration file, you can
add the configuration file as an input to the task. For example, in the process model, you can use the
addInputQueries function to specify an input query that finds the Model Advisor configuration file
and use the built-in query padv.builtin.query.FindFileWithAddress as the input query to find
the Model Advisor configuration file:

• The first argument, 'ma_config_file', specifies that the file is a Model Advisor configuration
file.

• The second argument specifies the path to the Model Advisor configuration file. In this example,
the configuration file is a file, sampleChecks.json, in the tools folder in the project.

 %% Check modeling standards
 % Tools required: Model Advisor
 if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());

 % Specify which Model Advisor configuration to run
 maTask.addInputQueries(padv.builtin.query.FindFileWithAddress(...
 Type = "ma_config_file",...
 Path = fullfile("tools","sampleChecks.json")));

 end

Note If you provide both a list of check IDs (CheckIDList) and a Model Advisor configuration file
for the task, the task runs Model Advisor using the Model Advisor configuration file and ignores the
list of check IDs.

Use Model Advisor Justification File

Starting in R2023a, if you want the task to use your Model Advisor justification files when checking
modeling standards, you can reconfigure the task to add the justification files as inputs. Add the built-
in query padv.builtin.query.FindMAJustificationFileForModel as an input query for the
task and specify the folder, JustificationFolder, that contains the justification files.

For example, if your justification files are in the directory Justifications/ModelAdvisor relative
to your project root, use the function addInputQueries to add those justification files as inputs to
the task:

 %% Check modeling standards
 % Tools required: Model Advisor
 if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());

 % Find and use justification files
 maTask.addInputQueries(...
 padv.builtin.query.FindMAJustificationFileForModel(...
 JustificationFolder=fullfile("Justifications","ModelAdvisor")));
 end

The justification file appears as an input in the I/O column in Process Advisor.

10 Built-In Task Library

10-14

Create and Configure Multiple Instances of Check Modeling Standards

You can add multiple instances of a task to your process model to run different task configurations.

For example, you can have one instance of the built-in task
padv.builtin.task.RunModelStandards that runs a specific Model Advisor configuration for a
subset of models and another Model Advisor configuration for other models.

To create multiple instances of a task, you need to specify unique values for the Name properties of
each task instance. By default, the task name is the name of the task class.

% Tasks need unique names
maTaskA = pm.addTask(padv.builtin.task.RunModelStandards(...
 Name = "maTaskA"));
maTaskB = pm.addTask(padv.builtin.task.RunModelStandards(...
 Name = "maTaskB"));

Use the other task properties to configure the task as needed. For example, you can specify which
models the task runs on, which Model Advisor configuration file the task uses, and where the reports
generate.

% Can specify unique title for task that appears in Process Advisor
maTaskA.Title = "Check Modeling Standards - A";
maTaskB.Title = "Check Modeling Standards - B";

% Can specify different Model Advisor configurations
maTaskA.addInputQueries(padv.builtin.query.FindFileWithAddress(...
 Type='ma_config_file', Path=fullfile('configs','configA.json')));
maTaskB.addInputQueries(padv.builtin.query.FindFileWithAddress(...
 Type='ma_config_file', Path=fullfile('configs','configB.json')));

% Can run on different sets of models
maTaskA.IterationQuery = padv.builtin.query.FindModels(...
 IncludePath = "control");
maTaskB.IterationQuery = padv.builtin.query.FindModelsWithLabel(...
 "ProjectLabelCategory","ProjectLabel");

% Specify unique locations for Model Advisor reports
maTaskA.ReportPath = fullfile(...
 defaultResultPath,'model_standards_A_results');
maTaskB.ReportPath = fullfile(...
 defaultResultPath,'model_standards_B_results');

 Check Modeling Standards

10-15

Source Code
To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.RunModelStandards

10 Built-In Task Library

10-16

Detect Design Errors
This task uses Simulink Design Verifier to statically detect run-time errors and dead logic and to
derive design ranges on your model. Design error detection can identify dead logic, integer overflow,
division by zero, and violations of design properties and assertions. By default, this task outputs a
design error detection report and data file.

Task Instance Task Title in Process Advisor
padv.builtin.task.DetectDesignErrors Detect Design Errors

Add Task to Process
Use the addTask function to add the task to the process model:

 dedObj = addTask(pm,padv.builtin.task.DetectDesignErrors);

Reconfigure Task
You can change how a task performs an action by setting the properties of the task object.

For example, you can set the properties of the task object to change the analysis options:

 dedObj.DetectDeadLogic = "on";

For padv.builtin.task.DetectDesignErrors task objects, the properties include:

Property Description
DataFileName Folder and file name for the MAT-file that

contains the data generated during the analysis,
specified as a character array. The data is stored
in an sldvData structure.

Default: "$ITERATIONARTIFACT$_sldvdata"
DesignMinMaxCheck Check that the intermediate and output signals in

models are within the range of specified
minimum and maximum constraints, specified as
"on" or "off".

Default: "off"
DetectActiveLogic Analyze models for active logic, specified as "on"

or "off". Note that this parameter is enabled
only if DetectDeadLogic is "on".

Default: "off"
DetectBlockInputRangeViolations Analyze models for block input range violations,

specified as "on" or "off".

Default: "off"

 Detect Design Errors

10-17

Property Description
DetectDeadLogic Analyze models for dead logic, specified as "on"

or "off".

Default: "off"
DetectDivisionByZero Analyze models for division-by-zero errors,

specified as "on" or "off".

Default: "on"
DetectDSMAccessViolations Analyze models for data store access violations,

specified as "on" or "off".

Default: "off"
DetectHISMViolationsHisl_0002 Check the usage of rem and reciprocal

operations that cause non-finite results, specified
as "on" or "off".

Default: "on"
DetectHISMViolationsHisl_0003 Check the usage of Square Root (Sqrt)

operations with inputs that can be negative,
specified as "on" or "off".

Default: "on"
DetectHISMViolationsHisl_0004 Check the usage of log and log10 operations

that cause non-finite results, specified as "on" or
"off".

Default: "on"
DetectHISMViolationsHisl_0028 Check the usage of Reciprocal Square Root

(rSqrt) blocks with inputs that can go zero or
negative, specified as "on" or "off".

Default: "on"
DetectInfNaN Analyze models for non-finite and NaN floating-

point values, specified as "on" or "off".

Default: "off"
DetectIntegerOverflow Analyze models for integer and fixed-point data

overflow errors, specified as "on" or "off".

Default: "on"
DetectOutOfBounds Analyze models for out of bounds array access

errors, specified as "on" or "off".

Default: "on"
DetectSubnormal Analyze models for subnormal floating-point

values, specified as "on" or "off".

Default: "off"

10 Built-In Task Library

10-18

Property Description
DisplayReport After analysis, display the report that Simulink

Design Verifier generates, specified as "on" or
"off".

Default: "off"
MaxProcessTime Maximum time (in seconds) that Simulink Design

Verifier spends analyzing a model, specified as a
double.

Default: 300
Options Options for the generated report, specified as

"summary", "objectives", "objects", or a
combination of these options in an array.

Default: ["summary" "objectives"]
ReportFormat Format of the generated report, specified as

either:

• "HTML" — HTML format
• "PDF" — PDF format

Default: "HTML"
ReportFilePath Folder and file name for the analysis report,

specified as a character array.

Default: fullfile('$DEFAULTOUTPUTDIR$',
'$ITERATIONARTIFACT
$','design_error_detections','$ITERATI
ONARTIFACT
$_Design_Error_Detection_Report')

ShowUI Display messages in the log window, specified as
a numeric or logical 1 (true) or 0 (false). When
ShowUI is specified as 0, messages appear in the
MATLAB Command Window.

Default: 0

The task uses these properties to create a design verification options object by using the function
sldevoptions and generate a report by using the function sldvreport. For more information on
the options, see the Simulink Design Verifier documentation for sldevoptions and sldvreport.

Source Code
To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.DetectDesignErrors

 Detect Design Errors

10-19

Generate Code
This task uses Embedded Coder to generate code. The task returns the generated code report as an
output file.

Task Instance Task Title in Process Advisor
padv.builtin.task.GenerateCode Generate Code

You can use this task to generate code, iterating over either each model in the project or the project.

Note This task generates code but does not build executable files.

Add Task to Process
Use the addTask function to add the task to the process model:

 addTask(pm,padv.builtin.task.GenerateCode);

Reconfigure Task
You can change how a task performs an action by setting the properties of the task object.

For padv.builtin.task.GenerateCode task objects, the properties include:

10 Built-In Task Library

10-20

General Behavior

Property Description
TreatAsRefModel By default, the task automatically identifies

whether a model is a top model or a reference
model before generating code. But you can
specify TreatAsRefModel as true or false if
you want to override the behavior and only
generate reference model code or top model
code.

Default: []
GenerateCodeOnly By default, the task generates code only and does

not build an executable file.

Default: 1
ObfuscateCode Generate obfuscated C code, specified as a

numeric or logical 1 (true) or 0 (false).

Default: 0
UpdateThisModelReferenceTarget Conditional rebuild option for model reference

build, specified as either:

• "Force"
• "IfOutOfDateOrStructuralChange"
• "IfOutOfDate"

Default:
"IfOutOfDateOrStructuralChange"

ForceTopModelBuild Force top model of model hierarchy to build,
specified as a numeric or logical 1 (true) or 0
(false).

Default: 0

 Generate Code

10-21

Parallel Code Generation

Property Description
IncludeModelReferenceSimulationTargets Build model reference simulation targets,

specified as a numeric or logical 1 (true) or 0
(false).

Default: false
GenerateExternalCodeCache Setting to collect only SLXC files as task outputs,

specified as a numeric or logical 1 (true) or 0
(false).

Default:false
ExternalCodeCacheDirectory Location to save SLXC file, specified as a string.

Default:fullfile('$DEFAULTOUTPUTDIR$',
"$ITERATIONARTIFACT$",
"external_code_cache")

TrackAllGeneratedCode Track all code files, not just model.c and
model.h files, specified as a numeric or logical 1
(true) or 0 (false).

Default:false

The task uses these properties to generate code by using the function slbuild. For more
information on the slbuild arguments, see the documentation for slbuild.

Source Code
To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.GenerateCode

10 Built-In Task Library

10-22

Generate Model Comparison
This task uses the Comparison Tool to compare models in the project to their ancestors in Git and
publishes a comparison report. The task compares your version of the model to either the latest or
previous version on the main branch in Git:

• If you make a change to a model and run the task, the task compares your version of the model to
either the head of the current branch or latest version on the main branch in Git.

• If you do not make any changes to a model and run the task, the task compares the model to the
previous version available on the main branch in Git.

You can use the task properties to specify different report options, filtering options, and the name of
the Git branch used for the comparison.

Task Instance Task Title in Process Advisor
padv.builtin.task.GenerateModelComparison Generate Model Comparison

Prerequisites
• To find and compare model ancestors, this task requires that you use Git source control for your

project. For information on how to add a project to Git source control, see https://
www.mathworks.com/help/simulink/ug/add-a-project-to-source-control.html.

• If you run MATLAB using the -nodisplay option or you use a machine that does not have a
display (like many CI runners and Docker containers), you should set up a virtual display server
before you include this task in your process model. For information, see "Set Up Virtual Display
for No-Display Machine" in the User's Guide.

Add Task to Process
Use the addTask function to add the task to the process model:

 modelCompareTask = addTask(pm, padv.builtin.task.GenerateModelComparison());

Reconfigure Task
You can change how a task performs an action by setting the properties of the task object.

For padv.builtin.task.GenerateModelComparison task objects, the properties include:

 Generate Model Comparison

10-23

https://www.mathworks.com/help/simulink/ug/add-a-project-to-source-control.html
https://www.mathworks.com/help/simulink/ug/add-a-project-to-source-control.html

Report Options

Property Description
ReportName Names of generated comparison report, specified

as a string.

Default: "$ITERATIONARTIFACT
$_Model_Comparison"

ReportPath Path to generated comparison report, specified as
a string.

Default: fullfile('$DEFAULTOUTPUTDIR$',
'$ITERATIONARTIFACT
$','model_comparison')

ReportFormat Format of generated comparison report, specified
as either "DOCX", "HTML", or "PDF".

Default: "HTML"

Advanced Options

Property Description
Filter Setting for filtering model comparison report,

specified as either:

• "unfiltered" — Removes all filtering from
the comparison.

• "default" — Default filtering for the
comparison, which hides any non-functional
changes.

Default: "default"
MainBranch Name of Git branch used for comparison,

specified as a string.

Default: "main"

The task uses these properties to specify input arguments for the function visdiff. For information
on visdiff, see https://www.mathworks.com/help/matlab/ref/visdiff.html.

Launch Tool Action
In Process Advisor, when you point to the task and click ... > Compare to Ancestor, you can open
the Model Comparison tool.

10 Built-In Task Library

10-24

https://www.mathworks.com/help/matlab/ref/visdiff.html

Source Code
To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.GenerateModelComparison

 Generate Model Comparison

10-25

Generate SDD Report
This task uses Simulink Report Generator to generate a System Design Description (SDD) report from
a predefined template. The System Design Description report provides a summary or detailed
information about a system design represented by a model.

Task Instance Task Title in Process Advisor
padv.builtin.task.GenerateSDDReport Generate SDD Report

Prerequisites
• If you run MATLAB using the -nodisplay option or you use a machine that does not have a

display (like many CI runners and Docker containers), you should set up a virtual display server
before you include this task in your process model. For information, see "Set Up Virtual Display
for No-Display Machine" in the User's Guide.

Add Task to Process
Use the addTask function to add the task to the process model:

 addTask(pm,padv.builtin.task.GenerateSDDReport);

Reconfigure Task
You can change how a task performs an action by setting the properties of the task object.

For padv.builtin.task.GenerateSDDReport task objects, the properties include:

Property Description
DisplayReport Open the generated report, specified as a

numeric or logical 1 (true) or 0 (false).

Default: 0
IncludeCustomLibraries Include custom libraries in the design

description, specified as a numeric or logical 1
(true) or 0 (false).

Default: 0
IncludeDetails Include design details, like block parameters, in

the design description, specified as a numeric or
logical 1 (true) or 0 (false).

Default: 1
IncludeGlossary Include a glossary in the design description,

specified as a numeric or logical 1 (true) or 0
(false).

Default: 1

10 Built-In Task Library

10-26

Property Description
IncludeLookupTables Include lookup tables in the design description,

specified as a numeric or logical 1 (true) or 0
(false).

Default: 1
IncludeModelRefs Include model references in the design

description, specified as a numeric or logical 1
(true) or 0 (false).

Default: 0
IncludeRequirementsLinks Include requirement links in the design

description, specified as a numeric or logical 1
(true) or 0 (false).

Default: 1
IncrOutputName Increment the report name to avoid overwriting

an existing report, specified as a numeric or
logical 1 (true) or 0 (false).

Default: 0
LegalNotice Legal notice that appears on the report, specified

as a string array.

Default: "For Internal Distribution
Only"

PackageType File package type index of the generated HTML
report, specified as either:

• 1 — Zipped. Package report files in a single
compressed file that has the report name, with
a .zip extension.

• 2 — Unzipped. Generate the report files in a
subfolder of the current folder. The subfolder
has the report name.

• 3 — Both zipped and unzipped. Package the
report files as both zipped and unzipped.

Note that this parameter is enabled when
ReportFormat is "html".

Default: 1

 Generate SDD Report

10-27

Property Description
ReportFormat Output format for the generated report, specified

as either:

• "html" — HTML format. You can use the
property PackageType to specify whether
report files are zipped, unzipped, or produce
both zipped and unzipped files.

• "pdf" — PDF format
• "docx" — Microsoft Word document format

Default: "html"
ReportName File name for the generated report, specified as a

string array.

Default: "$ITERATIONARTIFACT$_SDD"
ReportPath Path to the generated report, specified as a string

array.

Default:
string(fullfile('$DEFAULTOUTPUTDIR$',
'$ITERATIONARTIFACT$',
'system_design_description'))

ReportTitle Title of the report, specified as a string.

Default: ""
TitleImgPath Path of image that appears on report title page,

specified as a string.

Default: ""
Subtitle Subtitle of the report, specified as a string.

Default: "Design Description"
TimeFormat Format of the data and time that the report

generated, specified as a string.

Default: ""
UseStatusWindow Display report generation status messages in

separate window, specified as a numeric or
logical 1 (true) or 0 (false).

Default: 0

The task uses these properties to specify the report options for an SDD object. For information on the
System Design Description options, see https://www.mathworks.com/help/rptgenext/ug/system-
design-description-dialog-box.html.

Source Code
To view the source code for this built-in task, in the MATLAB Command Window, enter:

10 Built-In Task Library

10-28

https://www.mathworks.com/help/rptgenext/ug/system-design-description-dialog-box.html
https://www.mathworks.com/help/rptgenext/ug/system-design-description-dialog-box.html

open padv.builtin.task.GenerateSDDReport

 Generate SDD Report

10-29

Generate Simulink Web View
This task uses the Simulink Report Generator to create a Web view for your models.

Task Instance Task Title in Process Advisor
padv.builtin.task.GenerateSimulinkWebView Generate Simulink Web View

Prerequisites
• If you run MATLAB using the -nodisplay option or you use a machine that does not have a

display (like many CI runners and Docker containers), you should set up a virtual display server
before you include this task in your process model. For information, see "Set Up Virtual Display
for No-Display Machine" in the User's Guide.

Add Task to Process
Use the addTask function to add the task to the process model:

 addTask(pm,padv.builtin.task.GenerateSimulinkWebView);

Reconfigure Task
You can change how a task performs an action by setting the properties of the task object.

For padv.builtin.task.GenerateSimulinkWebView task objects, the properties include:

Property Description
FollowLinks Follow links into library blocks, specified as

either:

• 0 — Does not allow you to follow links into
library blocks in a web view

• 1 — Allows you to follow links into library
blocks in a web view

Default: 1
FollowModelReference Access referenced models in a web view,

specified as either:

• 0 — Does not allow you to access referenced
models in a web view

• 1 — Allows you to access referenced models in
a web view

Default: 1
IncludeNotes Include user notes, specified as a numeric or

logical 1 (true) or 0 (false).

Default: 1

10 Built-In Task Library

10-30

Property Description
IncrementalExport Starting in R2022b, export models incrementally,

specified as a numeric or logical 1 (true) or 0
(false).

Default: 0
LookUnderMasks Export the ability to interact with masked blocks,

specified as either "None" or "All".

Default: "All"
PackagingType Type of web view output package, specified as

"zipped", "unzipped", or "both".

Default: "unzipped"
RecurseFolder Export models in subfolders, specified as a

numeric or logical 1 (true) or 0 (false).

Default: 0
ReportName File name for the generated report, specified as a

string array.

Default: "$ITERATIONARTIFACT$_webview"
ReportPath Path to the generated report, specified as a string

array.

Default:
string(fullfile('$DEFAULTOUTPUTDIR$',
'$ITERATIONARTIFACT$', 'webview'))

SearchScope Systems to export, relative to the system_name
system, specified as "All",
"CurrentAndBelow", "CurrentAndAbove", or
"Current".

Default: "All"
ShowProgressBar Display the status bar when you export a web

view, specified as a numeric or logical 1 (true) or
0 (false).

Default: 0
ViewFile Display the web view in a web browser when you

export the web view, specified as a numeric or
logical 1 (true) or 0 (false).

Default: 0

The task uses these properties to specify the input arguments for the function slwebview. For
information on the arguments, see the documentation for slwebview: https://www.mathworks.com/
help/rptgenext/ug/slwebview.html.

 Generate Simulink Web View

10-31

https://www.mathworks.com/help/rptgenext/ug/slwebview.html
https://www.mathworks.com/help/rptgenext/ug/slwebview.html

Source Code
To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.GenerateSimulinkWebView

10 Built-In Task Library

10-32

Inspect Code
This task uses the Simulink Code Inspector to detect unintended functionality in your models by
establishing model-to-code and code-to-model traceability. The results of this task can help you to
satisfy code-review objectives in DO-178 and other high-integrity standards.

Task Instance Task Title in Process Advisor
padv.builtin.task.RunCodeInspection Inspect Code

This task runs on the generated model code, iterating over either each model in the project or the
project itself.

Note This task is not supported on macOS.

Add Task to Process
Use the addTask function to add the task to the process model and use the IsTopModel property to
specify that the task should inspect reference model code:

 addTask(pm,padv.builtin.task.RunCodeInspection);

Reconfigure Task
You can change how a task performs an action by setting the properties of the task object.

For padv.builtin.task.RunCodeInspection task objects, the properties include:

Property Description
IsTopModel By default, the task automatically identifies

whether a model is a top model or a reference
model before generating code. But you can
specify IsTopModel as true or false if you
want to override the behavior and only generate
top model code or reference model code.

Default: []
ReportFolder Path to the generated report, specified as a string

array.

The task uses this property to specify the report
folder for code inspection.

Default:
string(fullfile('$DEFAULTOUTPUTDIR$',
'$ITERATIONARTIFACT$',
'code_inspection'))

The task uses these properties to create a code inspection object (slci.Configuration).

 Inspect Code

10-33

Source Code
To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.RunCodeInspection

10 Built-In Task Library

10-34

Merge Test Results
This task uses Simulink Test and Simulink Coverage™ to generate the following artifacts for a model:

• a consolidated test results report
• a merged model coverage report for normal mode simulation results
• a merged code coverage report for software-in-the-loop (SIL) mode results
• a merged code coverage report for processor-in-the-loop (PIL) mode results

Task Instance Task Title in Process Advisor
padv.builtin.task.MergeTestResults Merge Test Results

Prerequisites
• You can use the built-in task padv.builtin.task.RunTestsPerTestCase to run your test

cases. This task only supports merging coverage results from normal simulation mode results. The
merging of coverage results from software-in-the-loop (SIL), processor-in-the-loop (PIL), and other
modes is not supported.

Add Task to Process
Use the addTask function to add the task to the process model:

 addTask(pm,padv.builtin.task.MergeTestResults);

Reconfigure Task
You can change how a task performs an action by setting the properties of the task object.

For padv.builtin.task.MergeTestResults task objects, the properties include:

Property Description
CovAllTestInMdlSumm Include each test in the model summary, specified

as a numeric or logical 1 (true) or 0 (false).

Default: 0
CovBarGrInMdlSumm Produce bar graphs in the model summary,

specified as a numeric or logical 1 (true) or 0
(false).

Default: 1
CovComplexInBlkTable Include cyclomatic complexity numbers in block

details, specified as a numeric or logical 1 (true)
or 0 (false).

Default: 1

 Merge Test Results

10-35

Property Description
CovComplexInSumm Include cyclomatic complexity numbers in

summary, specified as a numeric or logical 1
(true) or 0 (false).

Default: 1
CovElimFullCov Exclude fully covered model objects from report,

specified as a numeric or logical 1 (true) or 0
(false).

Default: 0
CovElimFullCovDetails Exclude fully covered model object details from

report, specified as a numeric or logical 1 (true)
or 0 (false).

Default: 1
CovFiltExecMetric Filter Execution metric from report, specified as

a numeric or logical 1 (true) or 0 (false).

Default: 0
CovFiltSFEvent Filter Stateflow events from report, specified as a

numeric or logical 1 (true) or 0 (false).

Default: 0
CovGenerateWebViewReport Generate web view report, specified as a numeric

or logical 1 (true) or 0 (false).

Default: 0
CovHitCntInMdlSumm Display hit/count ratio in the model summary,

specified as a numeric or logical 1 (true) or 0
(false).

Default: 0
CovReportName Name of generated model coverage report,

specified as a string.

Default: "$ITERATIONARTIFACT
$_ModelCoverage_Report.html"

CovReportNameSIL Name of generated software-in-the-loop (SIL)
code coverage report, specified as a string.

Default: "$ITERATIONARTIFACT
$_SIL_CodeCoverage_Report.html"

CovReportNamePIL Name of generated processor-in-the-loop (PIL)
code coverage report, specified as a string.

Default: "$ITERATIONARTIFACT
$_PIL_CodeCoverage_Report.html"

10 Built-In Task Library

10-36

Property Description
CovShowReport Show coverage report, specified as a numeric or

logical 1 (true) or 0 (false).

Default: 0
CovTwoColorBarGraphs Use two-color bar graphs, specified as a numeric

or logical 1 (true) or 0 (false).

Default: 1
Author Name of the report author, specified as a string

array.

Default: "Process Advisor"
IncludeComparisonSignalPlots Include the signal comparison plots defined

under baseline criteria, equivalence criteria, or
assessments using the verify operator in the test
case, specified as a numeric or logical 1 (true) or
0 (false).

Default: 0
IncludeCoverageResult Include coverage metrics that are collected at

test execution, specified as a numeric or logical 1
(true) or 0 (false).

Default: 1
IncludeErrorMessages Include error messages from the test case

simulations, specified as a numeric or logical 1
(true) or 0 (false).

Default: 1
IncludeMATLABFigures Include the figures opened from a callback script,

custom criteria, or by the model in the report,
specified as a numeric or logical 1 (true) or 0
(false).

Default: 0
IncludeMLVersion Include the version of MATLAB used to run the

test cases, specified as a numeric or logical 1
(true) or 0 (false).

Default: 1
IncludeSimulationMetadata Include simulation metadata for each test case or

iteration, specified as a numeric or logical 1
(true) or 0 (false).

Default: 0

 Merge Test Results

10-37

Property Description
IncludeSimulationSignalPlots Include the simulation output plots of each signal,

specified as a numeric or logical 1 (true) or 0
(false).

Default: 0
IncludeTestRequirement Include the test requirement link defined under

Requirements in the test case, specified as a
numeric or logical 1 (true) or 0 (false).

Default: 1
IncludeTestResults Include all or a subset of test results in the

report, specified as either:

• 0 — Passed and failed results
• 1 — Only passed results
• 2 — Only failed results

Default: 0
LaunchReport Open the generated report, specified as a

numeric or logical 1 (true) or 0 (false).

Default: 0
LoadSimulationSignalData Task loads simulation signal data when loading

test results, specified as a numeric or logical 1
(true) or 0 (false).

Default: 0
NumPlotColumnsPerPage Number of columns of plots to include on report

pages, specified as an integer 1, 2, 3, or 4.

Default: 1
NumPlotRowsPerPage Number of rows of plots to include on report

pages, specified as an integer 1, 2, 3, or 4.

Default: 2
ReportFormat Output format for the generated report, specified

as either:

• "pdf" — PDF format
• "docx" — Microsoft Word document format
• "zip" — Zipped file

Default: "pdf"

10 Built-In Task Library

10-38

Property Description
ReportPath Path to the generated report, specified as a string

array.

Default: fullfile('$DEFAULTOUTPUTDIR$',
'$ITERATIONARTIFACT$' ,
'test_results')

ReportName File name for the generated report, specified as a
string array.

Default: "$ITERATIONARTIFACT
$_Test_Report"

ReportTitle Title of the report, specified as a string.

Default: "$ITERATIONARTIFACT$ TEST
REPORT"

Source Code
To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.MergeTestResults

 Merge Test Results

10-39

Run Tests (per model)
This task uses Simulink Test to run the test cases associated with your models. The task runs each
test cases for each model. Process Advisor shows the name of each model under the Run Tests task.
Certain tests might generate code.

Task Instance Task Title in Process Advisor
padv.builtin.task.RunTestsPerModel Run Tests

Note Since this task runs each test case individually, the task only executes test-case level callbacks.
The task does not execute test-file level callbacks or test-suite level callbacks.

Add Task to Process
Use the addTask function to add the task to the process model:

 addTask(pm,padv.builtin.task.RunTestsPerModel);

Reconfigure Task
You can change how a task performs an action by setting the properties of the task object.

For padv.builtin.task.RunTestsPerModel task objects, the properties include:

Property Description
Author Name of the report author, specified as a string

array.

Default: "Process Advisor"
IncludeComparisonSignalPlots Include the signal comparison plots defined

under baseline criteria, equivalence criteria, or
assessments using the verify operator in the test
case, specified as a numeric or logical 1 (true) or
0 (false).

Default: 0
IncludeCoverageResult Include coverage metrics that are collected at

test execution, specified as a numeric or logical 1
(true) or 0 (false).

Default: 1
IncludeErrorMessages Include error messages from the test case

simulations, specified as a numeric or logical 1
(true) or 0 (false).

Default: 1

10 Built-In Task Library

10-40

Property Description
IncludeMATLABFigures Include the figures opened from a callback script,

custom criteria, or by the model in the report,
specified as a numeric or logical 1 (true) or 0
(false).

Default: 0
IncludeMLVersion Include the version of MATLAB used to run the

test cases, specified as a numeric or logical 1
(true) or 0 (false).

Default: 1
IncludeSimulationMetadata Include simulation metadata for each test case or

iteration, specified as a numeric or logical 1
(true) or 0 (false).

Default: 0
IncludeSimulationSignalPlots Include the simulation output plots of each signal,

specified as a numeric or logical 1 (true) or 0
(false).

Default: 0
IncludeTestRequirement Include the test requirement link defined under

Requirements in the test case, specified as a
numeric or logical 1 (true) or 0 (false).

Default: 1
IncludeTestResults Include all or a subset of test results in the

report, specified as either:

• 0 — Passed and failed results
• 1 — Only passed results
• 2 — Only failed results

Default: 0
LaunchReport Open the generated report, specified as a

numeric or logical 1 (true) or 0 (false).

Default: 0
NumPlotColumnsPerPage Number of columns of plots to include on report

pages, specified as an integer 1, 2, 3, or 4.

Default: 1
NumPlotRowsPerPage Number of rows of plots to include on report

pages, specified as an integer 1, 2, 3, or 4.

Default: 2

 Run Tests (per model)

10-41

Property Description
ReportFormat Output format for the generated report, specified

as either:

• "pdf" — PDF format
• "docx" — Microsoft Word document format
• "zip" — Zipped file

Default: "pdf"
ReportPath Path to the generated report, specified as a string

array.

Default: fullfile('$DEFAULTOUTPUTDIR$',
'$ITERATIONARTIFACT$','test_results')

ReportName File name for the generated report, specified as a
string array.

Default: "$ITERATIONARTIFACT$_Test"
ReportTitle Title of the report, specified as a string.

Default: "$ITERATIONARTIFACT$ REPORT"
ResultFileName Name of test result file, specified as a string

array.

Default: "$ITERATIONARTIFACT
$_ResultFile"

ResultFilePath Path to test result file, specified as a string array.

Default: fullfile('$DEFAULTOUTPUTDIR$',
'$ITERATIONARTIFACT$','test_results')

SaveResultsAfterRun Save the test results to a file after execution,
specified as a numeric or logical 1 (true) or 0
(false).

Default: 1

10 Built-In Task Library

10-42

Property Description
SimulationMode Since R2023a

Simulation mode for running tests, specified as
"Normal", "Accelerator", "Rapid
Accelerator", "Software-in-the-Loop", or
"Processor-in-the-Loop".

By default, the property is empty (""), which
means the built-in task uses the simulation mode
that you define in the test itself.

If you specify a value other than "", the built-in
task overrides the simulation mode set in the Test
Manager. You do not need to update the test
parameters or settings to run the test in the new
mode.

Default: ""

Source Code
To view the source code for this built-in task, in the MATLAB Command Window, enter:

open padv.builtin.task.RunTestsPerModel

 Run Tests (per model)

10-43

Run Tests (per test case)
This task uses Simulink Test to run the test cases associated with your models. The task runs each
test case individually. Process Advisor shows the name of each test case under the Run Tests task.
Certain tests might generate code.

Task Instance Task Title in Process Advisor
padv.builtin.task.RunTestsPerTestCase Run Tests

Note Since this task runs each test case individually, the task only executes test-case level callbacks.
The task does not execute test-file level callbacks or test-suite level callbacks.

To generate a consolidated test results report and a merged coverage report for your model, you can
use the built-in task padv.builtin.task.MergeTestResults.

Add Task to Process
Use the addTask function to add the task to the process model:

 addTask(pm,padv.builtin.task.RunTestsPerTestCase);

Reconfigure Task
You can change how a task performs an action by setting the properties of the task object.

For padv.builtin.task.RunTestsPerTestCase task objects, the properties include:

Property Description
ResultFileName Name of test result file, specified as a string

array.

Default: "$ITERATIONARTIFACT
$_ResultFile"

10 Built-In Task Library

10-44

Property Description
SimulationMode Since R2023a

Simulation mode for running tests, specified as
"Normal", "Accelerator", "Rapid
Accelerator", "Software-in-the-Loop", or
"Processor-in-the-Loop".

By default, the property is empty (""), which
means the built-in task uses the simulation mode
that you define in the test itself.

If you specify a value other than "", the built-in
task overrides the simulation mode set in the Test
Manager. You do not need to update the test
parameters or settings to run the test in the new
mode.

Default: ""

If you want the task to only run on test cases that have a specific test tag, specify the
IterationQuery using the built-in query padv.builtin.query.FindTestCasesForModel and
specify the test tag using the Tags argument. For example, to have the task only run on test cases
that were tagged with the test tag FeatureA:

 addTask(pm,padv.builtin.task.RunTestsPerTestCase,...
 IterationQuery = padv.builtin.query.FindTestCasesForModel(Tags="FeatureA"));

Source Code
To view the source code for this built-in task, in the MATLAB Command Window, enter:

 open padv.builtin.task.RunTestsPerTestCase

 Run Tests (per test case)

10-45

Built-In Query Library

The support package CI/CD Automation for Simulink Check contains several built-in queries that can
find specific sets of artifacts in your project. You can use the queries when you define your process,
but note that you can only use certain queries as an input query (InputQueries) or iteration query
(IterationQuery) for a task. The built-in queries include:

Query Returns Iteration
Query

Input
Query

padv.builtin.query.FindArtifacts Artifacts that meet
specified criteria

✔ ✔*

padv.builtin.query.FindCodeForModel Generated code
files and
buildInfo.mat
for a model

✔ ✔

padv.builtin.query.FindExternalCodeCache External code cache
files in project

 ✔

padv.builtin.query.FindFilesWithLabel Files with specific
project label

✔

padv.builtin.query.FindFileWithAddress File at the specified
address

✔ ✔

padv.builtin.query.FindMAJustificationFileForModel Find Model Advisor
justification files

✔ ✔

padv.builtin.query.FindModels Models ✔ ✔*
padv.builtin.query.FindModelsWithLabel Models with

specific project
label

✔

padv.builtin.query.FindModelsWithTestCases Models associated
with a test case

✔

padv.builtin.query.FindProjectFile Project file ✔ ✔

padv.builtin.query.FindRefModels Referenced models ✔
padv.builtin.query.FindRequirements Requirement sets ✔ ✔*
padv.builtin.query.FindRequirementsForModel Requirements

associated with
model

✔ ✔

padv.builtin.query.FindTestCasesForModel Test cases
associated with
model

✔ ✔

padv.builtin.query.FindTopModels Top models ✔ ✔

padv.builtin.query.GetDependentArtifacts Dependent artifacts
for artifact

 ✔

11

Query Returns Iteration
Query

Input
Query

padv.builtin.query.GetIterationArtifact Artifact that the
task is iterating
over

 ✔

padv.builtin.query.GetOutputsOfDependentTask Outputs from
immediate
predecessor task

 ✔

*You cannot use the query as an input query if you specify the query input argument InProject as
true.

Reference pages for the built-in task are listed alphabetically on the following pages.

Tip You can access help for the built-in queries from the MATLAB Command Window. For example,
this code returns help information for the built-in query padv.builtin.query.FindArtifacts:

 help padv.builtin.query.FindArtifacts

11 Built-In Query Library

11-2

padv.builtin.query.FindArtifacts
This query returns each of the artifacts in project that meet the criteria specified by the optional
input arguments.

Syntax
q = padv.builtin.query.FindArtifacts() finds all artifacts in the project.

q = padv.builtin.query.FindArtifacts(Name,Value) find artifacts that meet the criteria
specified by one or more name-value arguments. For example, to find artifacts that include "HLR" in
the full file path, specify IncludePath="HLR".

Input Arguments
Name-Value Arguments

• Name — Unique identifier for query, specified as character vector or string. Example:
"CustomQueryForArtifacts"

• ArtifactType — Type of artifact, specified as a string or a cell array of character vectors. For a
list of valid artifact types, see the chapter "Artifact Types" in this PDF. Example:
{"sl_model_file","m_file"}

• IncludeLabel — Find artifacts that have a specific project label, specified as a cell array where
the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• ExcludeLabel — Exclude artifacts that have a specific project label, specified as a cell array
where the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• IncludePath — Find artifacts where the path contains specific text, specified as a character
vector or string. Example: "HLR"

• ExcludePath — Exclude artifacts where the path contains specific text, specified as a character
vector. Example: "HLR"

• InProject — Include only artifacts that have been added to the project, specified as a numeric or
logical 1 (true) or 0 (false). Example: true

Note If you specify InProject as true, you can no longer use the query as an input query.

• FilterSubFileArtifacts — Filter out sub-file artifacts from query results, specified as a
numeric or logical 1 (true) or 0 (false). A sub-file is a part of a larger file. For example, a
subsystem is a sub-file of a model file. Example: false

 padv.builtin.query.FindArtifacts

11-3

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts. If you inherit from this built-in
query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,~)
 ...
end

Use in Process Model
You can use this query in your process model to find artifacts that your tasks can iterate over
(IterationQuery) or use as inputs (InputQueries).

For example, suppose that you have a custom task, MyCustomTask, that you add to your process
model. You can use the built-in query padv.builtin.query.FindArtifacts to find specific types
of artifacts. To find the data dictionaries in the project, you specify the ArtifactType argument as
"sl_data_dictionary_file".

 taskObj = addTask(pm, "MyCustomTask",...
 IterationQuery = padv.builtin.query.FindArtifacts(...
 ArtifactType = "sl_data_dictionary_file"),...
 InputQueries = padv.builtin.query.GetIterationArtifact);

In this example, specifying InputQueries as padv.builtin.query.GetIterationArtifact
allows the task to use the artifacts returned by IterationQuery as inputs to the task.

Test Outside Process Model
Although you typically use queries inside your process model, you can run queries outside of your
process model to confirm which artifacts the query returns.

For example:

1 Open a project. For this example, you can open the Process Advisor example project.

processAdvisorExampleStart

2 Create an instance of the query. You can use the arguments of the query to filter the query
results. For example, you can use the IncludeLabel argument to have the query only return
artifacts that use the Design project label from the Classification project label category.

q = padv.builtin.query.FindArtifacts(...
IncludeLabel = {'Classification','Design'});

3 Run the query and inspect the array of artifacts that the query returns.

run(q)

ans =

11 Built-In Query Library

11-4

 1×26 Artifact array with properties:

 Type
 Parent
 ArtifactAddress

 padv.builtin.query.FindArtifacts

11-5

padv.builtin.query.FindCodeForModel
This query returns only the generated code files and buildInfo.mat for a model.

Syntax
q = padv.builtin.query.FindCodeForModel() finds the generated code files and
buildInfo.mat for a model.

q = padv.builtin.query.FindCodeForModel(Name,Value) finds artifacts that meet the
criteria specified by one or more name-value arguments.

Input Arguments
Name-Value Arguments

• IncludeLabel — Find artifacts that have a specific project label, specified as a cell array where
the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• ExcludeLabel — Exclude artifacts that have a specific project label, specified as a cell array
where the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• IncludePath — Find artifacts where the path contains specific text, specified as a character
vector or string. Example: "HLR"

• ExcludePath — Exclude artifacts where the path contains specific text, specified as a character
vector. Example: "HLR"

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts that are associated with the artifact
iterationArtifact. If you inherit from this
built-in query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,iterationArtifact)
 ...
end

Use in Process Model
You can use this query in your process model to find artifacts that your tasks can iterate over
(IterationQuery) or use as inputs (InputQueries).

11 Built-In Query Library

11-6

For example, suppose that you create one subprocess to contain your code generation tasks and
another subprocess to contain your code analysis tasks:

spCodeGen = pm.addSubprocess("Code Generation Tasks");
spCodeAnalysis = pm.addSubprocess("Code Analysis Tasks");

Your code analysis tasks need access to the generated code, but the tasks themselves cannot directly
depend on the code generation task because that relationship would cross the subprocess boundary.

To pass the generated code from your code generation subprocess to your code analysis subprocess,
you can:

• Update any code analysis tasks to find and use the generated model code as an input to the task
using the built-in query padv.builtin.query.FindCodeForModel

• Specify that the code analysis subprocess depends on the code generation subprocess

% Update Code Analysis Tasks to find and use model code as an input to the task
psbfTask = spCodeAnalysis.addTask(padv.builtin.task.AnalyzeModelCode(...
 InputQueries=padv.builtin.query.FindCodeFolderForModel));
pscpTask = spCodeAnalysis.addTask(padv.builtin.task.AnalyzeModelCode(...
 Name="ProveCodeQuality", InputQueries=padv.builtin.query.FindCodeFolderForModel));
slciTask = spCodeAnalysis.addTask(padv.builtin.task.RunCodeInspection(...
 InputQueries=padv.builtin.query.FindCodeForModel));

% Code Analysis Subprocess depends on Code Generation Subprocess
spCodeAnalysis.dependsOn(spCodeGen);

 padv.builtin.query.FindCodeForModel

11-7

11 Built-In Query Library

11-8

padv.builtin.query.FindExternalCodeCache
This query returns the external code cache files (.slxc.bk) in the project.

Syntax
q = padv.builtin.query.FindExternalCodeCache() finds the external code cache files
(.slxc.bk) in the project. You can use this query to find external code cache files that you generate
using the built-in task padv.builtin.task.GenerateCode. The built-in task generates an external
code cache when you specify the task property GenerateExternalCodeCache as true.

q = padv.builtin.query.FindArtifacts(Name = queryName) finds the files and specifies a
new name, queryName, for the query object.

Input Arguments
Name-Value Arguments

• Name — Unique identifier for query, specified as character vector or string. Example:
"CustomQueryForArtifacts"

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts. If you inherit from this built-in
query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,~)
 ...
end

Use in Task Definition
You can use this query in your task definition to find and unpack external code cache files.

For example, if your team generates code in parallel by generating an external code cache,
downstream tasks that depend on the generated code need to unpack the generated code target
before performing the main task action. If you have a custom task that depends on that generated
code, you can find the external code cache files by using the built-in query
padv.builtin.query.FindExternalCodeCache and unpack the code generation target by using
the utility function padv.util.unpackExternalCodeCache. For example, you might use:

% Before main task action, access the generated code
% by finding and unpacking the external code cache
q = padv.builtin.query.FindExternalCodeCache;
artifactsArray = run(q);
 if ~isempty(artifactsArray)

 padv.builtin.query.FindExternalCodeCache

11-9

 padv.util.unpackExternalCodeCache(artifactsArray)
 end

% <definition for main task action that uses the generated code>

For information about parallel code generation and external code caches, see the documentation for
the GenerateExternalCodeCache property for the built-in task
padv.builtin.task.GenerateCode. The external code cache allows your team to generate code
in parallel while maintaining up-to-date task results.

Test Query from Command Window
Although you typically use queries inside a process model or task definition, you can run queries
directly from the MATLAB Command Window to confirm which artifacts the query returns.

For example:

Open the parallel code generation example.

processAdvisorParallelExampleStart

Generate code by running a code generation task iteration. For example, run the code generation
task on the reference model OuterLoop_Control.

runprocess(Tasks = "padv.builtin.task.GenerateCode", ...
 FilterArtifact = fullfile("02_Models","OuterLoop_Control", ...
 "specification","OuterLoop_Control.slx"));

Find the external code cache file by using the built-in query.

q = padv.builtin.query.FindExternalCodeCache;
artifactsArray = run(q);

Unpack the cache file.

padv.util.unpackExternalCodeCache(artifactsArray);

11 Built-In Query Library

11-10

padv.builtin.query.FindFilesWithLabel
This query returns files in the project that use the specified project label.

Syntax
q = padv.builtin.query.FindFilesWithLabel(categoryName,labelName) finds files that
use the project label labelName from the project label category categoryName.

q = padv.builtin.query.FindFilesWithLabel(___ ,Name,Value) find files that use the
project label labelName from the project label category categoryName and meet the criteria
specified by one or more name-value arguments. For example, to only return artifacts that include
"HLR" in the full file path, specify IncludePath="HLR".

Input Arguments
• categoryName — Name of project label category, specified as a character vector or string.

Example: "ModelLabels"

• labelName — Project label name, specified as character vector or string. Example:
"RunModelAdvisor"

Name-Value Arguments

• Name — Unique identifier for query, specified as character vector or string. Example:
"CustomQueryForArtifacts"

• IncludeLabel — Find artifacts that have a specific project label, specified as a cell array where
the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• ExcludeLabel — Exclude artifacts that have a specific project label, specified as a cell array
where the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• IncludePath — Find artifacts where the path contains specific text, specified as a character
vector or string. Example: "HLR"

• ExcludePath — Exclude artifacts where the path contains specific text, specified as a character
vector. Example: "HLR"

• InProject — Include only artifacts that have been added to the project, specified as a numeric or
logical 1 (true) or 0 (false). Example: true

 padv.builtin.query.FindFilesWithLabel

11-11

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts. If you inherit from this built-in
query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,~)
 ...
end

Use in Process Model
You can use this query in your process model to find artifacts for your task to iterate over
(IterationQuery).

For example, suppose that you want the built-in task padv.builtin.task.RunModelStandards to
only run for models that use the project label RunModelAdvisor from the project label category
ModelLabels. You can change the IterationQuery for the task to specify a different set of
artifacts for the task to run on. You can use the built-in query
padv.builtin.query.FindFilesWithLabel to find the models that use that project label.
Specify the first input argument as the project label category and the second argument as the project
label name.

 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.IterationQuery = ...
 padv.builtin.query.FindFilesWithLabel("ModelLabels","RunModelAdvisor");

Note You cannot use this query as an input query (InputQueries).

11 Built-In Query Library

11-12

padv.builtin.query.FindFileWithAddress
This query returns the file at the specified address in the project.

Syntax
q = padv.builtin.query.FindFileWithAddress(Type = ArtifactType,Path =
FilePath) finds a file, of type ArtifactType, at the address specified by FilePath.

To find multiple files, specify ArtifactType and FilePath as vectors of the same length.

q = padv.builtin.query.FindFileWithAddress(___ ,Name=Value) finds and returns a file
using the settings specified by one or more name-value arguments. For example, if you do not want
the build system to track changes to the returned file, specify TrackArtifacts=false.

Input Arguments
• ArtifactType — Type of artifact, specified as a string or string array. For a list of valid artifact

types, see the chapter "Artifact Types" in this PDF.

Examples:

• "sl_model_file"
• ["sl_model_file", "m_file"]

• FilePath — Path to file, specified as a character vector or string.

Examples:

• fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")
• [fullfile("myFiles","myModel.slx"), fullfile("myFiles","myScript.m")]

Name-Value Arguments

• ValidateFileExistence — Validate that the file exists before attempting to return the file in
the query results, specified as a numeric or logical 1 (true) or 0 (false). Default: true

• TrackArtifacts — Setting that controls whether the build system tracks changes to the
returned file, specified as a numeric or logical 1 (true) or 0 (false). Default: true

For more information, see "Turn Off Change Tracking for Input Artifacts".

Note If you specify TrackArtifacts=false, you can no longer use the query as an iteration
query. The build system needs to track changes iteration artifacts to identify the iterations for the
task.

 padv.builtin.query.FindFileWithAddress

11-13

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts. If you inherit from this built-in
query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,~)
 ...
end

Use in Process Model
By default, you can use this query in your process model to find artifacts that your tasks can iterate
over (IterationQuery) or use as inputs (InputQueries). However, if you specify
TrackArtifacts=false, you can no longer use this query as an iteration query because the build
system needs to track changes iteration artifacts to identify the iterations for the task.

Find Single File

For example, by default, the Check Modeling Standards task runs a subset of high-integrity checks.
But suppose that you want the task to run the Model Advisor checks specified by the Model Advisor
configuration file sampleChecks.json instead. In the process model, you can use the
addInputQueries function to specify an input query that finds the Model Advisor configuration file.
You can use the built-in query padv.builtin.query.FindFileWithAddress as an input query to
find the Model Advisor configuration file:

• The first argument, "ma_config_file", specifies that the artifact type of the file is a Model
Advisor configuration file.

• The second argument specifies the path to the Model Advisor configuration file.

 %% Checking model standards on a model
 if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.ReportPath = fullfile(...
 defaultResultPath,'model_standards_results');

 % Specify which Model Advisor configuration file to run
 maTask.addInputQueries(padv.builtin.query.FindFileWithAddress(...
 Type = "ma_config_file",...
 Path = fullfile("tools","sampleChecks.json")));

 end

Find Multiple Files

To find multiple files, specify the artifact type (Type) and the file path (Path) using vectors of the
same length. For example:

 padv.builtin.query.FindFileWithAddress(...
 Type=["ma_config_file",...
 "sl_model_file"],...

11 Built-In Query Library

11-14

 Path=[fullfile("tools","sampleChecks.json"),...
 fullfile("02_Models","AHRS_Voter","specification","AHRS_Voter.slx")])

If you only specify one value for Type, the query uses the same artifact type for each specified file
specified by Path.

 padv.builtin.query.FindFileWithAddress(...
 Type="ma_config_file",...
 Path=[fullfile("tools","sampleChecks.json"), fullfile("tools","myCustomChecks.json")])

Test Outside Process Model
Although you typically use queries inside your process model, you can run queries outside of your
process model to confirm which artifacts the query returns.

For example:

1 Open a project. For this example, you can open the Process Advisor example project.

processAdvisorExampleStart

2 Create an instance of the query. For example, create a query that finds a file with the artifact
type Model Advisor configuration file (ma_config_file) at the file path specified by
fullfile("tools","sampleChecks.json").

q = padv.builtin.query.FindFileWithAddress(...
 Type = "ma_config_file",...
 Path = fullfile("tools","sampleChecks.json"))

3 Run the query.

run(q)

The query returns the specified artifact.

ans =

 "tools\sampleChecks.json"

 padv.builtin.query.FindFileWithAddress

11-15

padv.builtin.query.FindMAJustificationFileForModel
Starting in R2023a, this query returns the Model Advisor justification file associated with the current
model.

Syntax
q = padv.builtin.query.FindMAJustificationFileForModel(JustificationFolder =
relativePathToFolder) finds the Model Advisor justification file associated with the current
model by searching for the file within the specified folder relativePathToFolder. The query
expects that the current iteration artifact is a model and that the Model Advisor justification filename
is the model name followed by _justifications.json. The query returns the justification file as a
padv.Artifact object of type ma_justification_file.

q = padv.builtin.query.FindMAJustificationFileForModel(___ , Name = queryName)
finds the Model Advisor justification file and specifies a new name, queryName, for the query object.

Note This query is only supported in R2023a and later releases.

Input Arguments
• relativePathToFolder — Relative path to folder that contains justification files (.json) for

models in the project, specified as a character vector or string. Example:
fullfile("Justifications","ModelAdvisor")

• queryName — Unique identifier for query, specified as character vector or string. Example:
"CustomFindJustificationFile"

Use in Process Model
You can use this query in your process model to provide the justification files as inputs for the built-in
task padv.builtin.task.RunModelStandards (InputQueries) or to find justification files that
your tasks can iterate over (IterationQuery).

Use Justifications When Checking Modeling Standards

If you want the built-in task padv.builtin.task.RunModelStandards to use your Model Advisor
justification files when checking modeling standards, you can reconfigure the task to add the
justification files as inputs. Add the built-in query
padv.builtin.query.FindMAJustificationFileForModel as an input query for the task and
specify the folder, JustificationFolder, that contains the justification files. For example, if your
justification files are in the directory Justifications/ModelAdvisor relative to your project root,
use the function addInputQueries to add those justification files as inputs to the task:

 %% Check modeling standards
 % Tools required: Model Advisor
 if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());

 % Find and use justification files

11 Built-In Query Library

11-16

 maTask.addInputQueries(...
 padv.builtin.query.FindMAJustificationFileForModel(...
 JustificationFolder=fullfile("Justifications","ModelAdvisor")));
 end

The justification file appears as an input in the I/O column in Process Advisor.

Iterate over Justification Files in Folder

If you want a task to iterate over the justification files for the models in the project, you can use this
query as the IterationQuery for a task. For example:

 myTask = pm.addTask("MyCustomTask",...
 IterationQuery = padv.builtin.query.FindMAJustificationFileForModel(...
 JustificationFolder = fullfile("Justifications","ModelAdvisor")));

 padv.builtin.query.FindMAJustificationFileForModel

11-17

padv.builtin.query.FindModels
This query returns each of the models in project that meet the criteria specified by the optional input
arguments.

Syntax
q = padv.builtin.query.FindModels() finds all models in the project. The models include
Simulink models and System Composer models.

q = padv.builtin.query.FindModels(Name,Value) find models that meet the criteria
specified by one or more name-value arguments. For example, to find models that include Control in
the full file path, specify IncludePath="Control".

Input Arguments
Name-Value Arguments

• Name — Unique identifier for query, specified as character vector or string. Example:
"CustomQuery"

• IncludeLabel — Find artifacts that have a specific project label, specified as a cell array where
the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• ExcludeLabel — Exclude artifacts that have a specific project label, specified as a cell array
where the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• IncludePath — Find artifacts where the path contains specific text, specified as a character
vector or string. Example: "Control"

• ExcludePath — Exclude artifacts where the path contains specific text, specified as a character
vector. Example: "Control"

• InProject — Include only artifacts that have been added to the project, specified as a numeric or
logical 1 (true) or 0 (false). Example: true

Note If you specify InProject as true, you can no longer use the query as an input query.

11 Built-In Query Library

11-18

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts. If you inherit from this built-in
query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,~)
 ...
end

Use in Process Model
You can use this query in your process model to find artifacts that your tasks can iterate over
(IterationQuery) or use as inputs (InputQueries).

For example, suppose that you only want to run the Check Modeling Standards task for models
that have Control in their file path. By default, the Check Modeling Standards task uses the built-
in query padv.builtin.query.FindModels as the IterationQuery. In the process model, you
can change the IterationQuery for the task to:

1 Use the built-in query padv.builtin.query.FindModels to find the models in the project.
2 Specify the IncludePath argument of the query to filter out any models that do not have

Control in the file path.

 %% Checking model standards on a model
 if includeModelStandardsTask
 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.ReportPath = fullfile(...
 defaultResultPath,'model_standards_results');

 % Specify which set of artifacts to run for
 maTask.IterationQuery = ...
 padv.builtin.query.FindModels(IncludePath = "Control")

 end

For the Process Advisor example project, the model AHRS_Voter.slx no longer appears under the
task title in Process Advisor because AHRS_Voter.slx does not include Control in the path.

 padv.builtin.query.FindModels

11-19

Test Outside Process Model
Although you typically use queries inside your process model, you can run queries outside of your
process model to confirm which artifacts the query returns.

For example:

1 Open a project. For this example, you can open the Process Advisor example project.

processAdvisorExampleStart

2 Create an instance of the query. You can use the arguments of the query to filter the query
results. For example, you can use the IncludeLabel argument to have the query only return
artifacts that use the Design project label from the Classification project label category.

q = padv.builtin.query.FindModels(...
IncludeLabel = {"Classification","Design"});

3 Run the query and inspect the array of artifacts that the query returns.

run(q)

ans =

 1×5 Artifact array with properties:

 Type
 Parent
 ArtifactAddress

11 Built-In Query Library

11-20

padv.builtin.query.FindModelsWithLabel
This query returns each of the models in project that use the specified project label.

Syntax
q = padv.builtin.query.FindModelsWithLabel(categoryName,labelName) finds models
that use the project label labelName from the project label category categoryName.

Input Arguments
• categoryName — Name of project label category, specified as a character vector or string.

Example: "ModelLabels"

• labelName — Project label name, specified as character vector or string. Example:
"RunModelAdvisor"

Name-Value Arguments

• Name — Unique identifier for query, specified as character vector or string. Example:
"CustomQueryForArtifacts"

• IncludeLabel — Find artifacts that have a specific project label, specified as a cell array where
the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• ExcludeLabel — Exclude artifacts that have a specific project label, specified as a cell array
where the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• IncludePath — Find artifacts where the path contains specific text, specified as a character
vector or string. Example: "HLR"

• ExcludePath — Exclude artifacts where the path contains specific text, specified as a character
vector. Example: "HLR"

• InProject — Include only artifacts that have been added to the project, specified as a numeric or
logical 1 (true) or 0 (false). Example: true

 padv.builtin.query.FindModelsWithLabel

11-21

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts. If you inherit from this built-in
query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,~)
 ...
end

Use in Process Model
You can use this query in your process model to find artifacts for your task to iterate over
(IterationQuery).

For example, suppose that you want the built-in task padv.builtin.task.RunModelStandards to
only run for models that use the project label RunModelAdvisor from the project label category
ModelLabels. You can change the IterationQuery for the task to specify a different set of
artifacts for the task to run on. You can use the built-in query
padv.builtin.query.FindModelsWithLabel to find the models that use that project label.
Specify the first input argument as the project label category and the second argument as the project
label name.

 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.IterationQuery = ...
 padv.builtin.query.FindModelsWithLabel("ModelLabels","RunModelAdvisor");

Note You cannot use this query as an input query (InputQueries).

11 Built-In Query Library

11-22

padv.builtin.query.FindModelsWithTestCases
This query returns each of the models in the project that are associated with a test case. You can use
the optional name-value arguments to filter the results.

Syntax
q = padv.builtin.query.FindModelsWithTestCases() finds all models that are associated
with a test case.

q = padv.builtin.query.FindModelsWithTestCases(Name,Value) find models that are
associated with a test case and meet the criteria specified by one or more name-value arguments. For
example, to find models that are associated with test cases and include Control in the full file path,
specify IncludePath="Control".

Input Arguments
Name-Value Arguments

• Name — Unique identifier for query, specified as character vector or string. Example:
"CustomQuery"

• IncludeLabel — Find artifacts that have a specific project label, specified as a cell array where
the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• ExcludeLabel — Exclude artifacts that have a specific project label, specified as a cell array
where the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• IncludePath — Find artifacts where the path contains specific text, specified as a character
vector or string. Example: "Control"

• ExcludePath — Exclude artifacts where the path contains specific text, specified as a character
vector. Example: "Control"

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts that are associated with the artifact
iterationArtifact. If you inherit from this
built-in query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,iterationArtifact)
 ...
end

 padv.builtin.query.FindModelsWithTestCases

11-23

Use in Process Model
You can use this query in your process model to find artifacts for your task to iterate over
(IterationQuery).

For example, suppose that you only want to run the Merge Test Results task for certain models that
do not have Control in the file path. By default, the Merge Test Results task uses the built-in query
padv.builtin.query.FindModelsWithTestCases as the IterationQuery. In the process
model, you can change the IterationQuery for the task to:

1 Use the built-in query padv.builtin.query.FindModelsWithTestCases to find the models
that are associated with a test case.

2 Specify the ExcludePath argument of the query to filter out any models that have Control in
the file path.

 mergeTestTask = pm.addTask(padv.builtin.task.MergeTestResults());
 mergeTestTask.IterationQuery = padv.builtin.query.FindModelsWithTestCases(...
 ExcludePath = "Control");

Note You cannot use this query as an input query (InputQueries).

11 Built-In Query Library

11-24

padv.builtin.query.FindProjectFile
This query returns the project file.

Syntax
q = padv.builtin.query.FindProjectFile() finds the project file.

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts. If you inherit from this built-in
query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,~)
 ...
end

Use in Process Model
You can use this query in your process model to find artifacts that your tasks can iterate over
(IterationQuery) or use as inputs (InputQueries).

For example, suppose that you have a custom task, MyCustomTask, that you want to run once for the
project. You can use the built-in query padv.builtin.query.FindProjectFile to find the project
file and specify the query as the IterationQuery for the custom task.

 taskObj = addTask(pm, "MyCustomTask",...
 IterationQuery = padv.builtin.query.FindProjectFile);

 padv.builtin.query.FindProjectFile

11-25

padv.builtin.query.FindRefModels
This query returns each of the referenced models in the project. You can use optional name-value
arguments to filter the results.

Syntax
q = padv.builtin.query.FindRefModels() finds all reference models in the project.

q = padv.builtin.query.FindRefModels(Name,Value) find reference models that meet the
criteria specified by one or more name-value arguments. For example, to find reference models that
include Control in the full file path, specify IncludePath="Control".

Input Arguments
Name-Value Arguments

• Name — Unique identifier for query, specified as character vector or string. Example:
"CustomQuery"

• IncludeLabel — Find artifacts that have a specific project label, specified as a cell array where
the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• ExcludeLabel — Exclude artifacts that have a specific project label, specified as a cell array
where the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• IncludePath — Find artifacts where the path contains specific text, specified as a character
vector or string. Example: "Control"

• ExcludePath — Exclude artifacts where the path contains specific text, specified as a character
vector. Example: "Control"

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts. If you inherit from this built-in
query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,~)
 ...
end

11 Built-In Query Library

11-26

Use in Process Model
You can use this query in your process model to find artifacts for your task to iterate over
(IterationQuery).

For example, suppose that you want the built-in task padv.builtin.task.RunModelStandards to
only run on reference models in the project. You can change the IterationQuery for the task to
specify a different set of artifacts for the task to run on. You can use the built-in query
padv.builtin.query.FindRefModels to find the reference models.

 maTask = pm.addTask(padv.builtin.task.RunModelStandards());
 maTask.IterationQuery = ...
 padv.builtin.query.FindRefModels;

Note You cannot use this query as an input query (InputQueries).

 padv.builtin.query.FindRefModels

11-27

padv.builtin.query.FindRequirements
This query returns each of the requirement sets (.slreqx) within the project. You can use optional
name-value arguments to filter the results.

Syntax
q = padv.builtin.query.FindRequirements() finds all requirement sets in the project.

q = padv.builtin.query.FindRequirements(Name,Value) finds requirement sets that meet
the criteria specified by one or more name-value arguments. For example, to find requirement sets
that include System in the full file path, specify IncludePath="System".

Input Arguments
Name-Value Arguments

• Name — Unique identifier for query, specified as character vector or string. Example:
"CustomQuery"

• IncludeLabel — Find artifacts that have a specific project label, specified as a cell array where
the first entry is the project label category and the second entry is the project label name.
Example: {"Level","System"}

• ExcludeLabel — Exclude artifacts that have a specific project label, specified as a cell array
where the first entry is the project label category and the second entry is the project label name.
Example: {"Level","System"}

• IncludePath — Find artifacts where the path contains specific text, specified as a character
vector or string. Example: "System"

• ExcludePath — Exclude artifacts where the path contains specific text, specified as a character
vector. Example: "System"

• InProject — Include only artifacts that have been added to the project, specified as a numeric or
logical 1 (true) or 0 (false). Example: true

Note If you specify InProject as true, you can no longer use the query as an input query.

11 Built-In Query Library

11-28

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts. If you inherit from this built-in
query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,~)
 ...
end

Use in Process Model
You can use this query in your process model to find artifacts that your tasks can iterate over
(IterationQuery) or use as inputs (InputQueries).

For example, suppose that you have a custom task, MyCustomTask, that you add to your process
model. You can use the built-in query padv.builtin.query.FindRequirements to find
requirement sets in the project. If you specify padv.builtin.query.FindRequirements as the
IterationQuery for the task, the task runs once for each requirement set in the project.

 taskObj = addTask(pm, "MyCustomTask",...
 IterationQuery = padv.builtin.query.FindRequirements,...
 InputQueries = padv.builtin.query.GetIterationArtifact);

In this example, specifying InputQueries as padv.builtin.query.GetIterationArtifact
allows the task to use the artifacts returned by IterationQuery as inputs to the task.

In Process Advisor, the requirement sets appear in the Tasks column.

 padv.builtin.query.FindRequirements

11-29

padv.builtin.query.FindRequirementsForModel
This query returns each of the requirements associated with a model. You can use optional name-
value arguments to filter the results.

Syntax
q = padv.builtin.query.FindRequirementsForModel() finds all requirements associated
with models in the project.

q = padv.builtin.query.FindRequirementsForModel(Name,Value) find requirements that
are associated with a model in the project and meet the criteria specified by one or more name-value
arguments. For example, to find requirements that include System in the full file path, specify
IncludePath="System".

Input Arguments
Name-Value Arguments

• Name — Unique identifier for query, specified as character vector or string. Example:
"CustomQuery"

• IncludeLabel — Find artifacts that have a specific project label, specified as a cell array where
the first entry is the project label category and the second entry is the project label name.
Example: {"Level","System"}

• ExcludeLabel — Exclude artifacts that have a specific project label, specified as a cell array
where the first entry is the project label category and the second entry is the project label name.
Example: {"Level","System"}

• IncludePath — Find artifacts where the path contains specific text, specified as a character
vector or string. Example: "System"

• ExcludePath — Exclude artifacts where the path contains specific text, specified as a character
vector. Example: "System"

11 Built-In Query Library

11-30

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts that are associated with the artifact
iterationArtifact. If you inherit from this
built-in query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,iterationArtifact)
 ...
end

 padv.builtin.query.FindRequirementsForModel

11-31

padv.builtin.query.FindTestCasesForModel
This query returns each of the test cases associated with a model. You can use optional name-value
arguments to filter the results.

Note The query also finds test cases associated with subsystem references. A subsystem reference
allows you to save the contents of a subsystem in a separate file and reference it using a Subsystem
Reference block.

Syntax
q = padv.builtin.query.FindTestCasesForModel() finds test cases associated with a model.

q = padv.builtin.query.FindTestCasesForModel(Name,Value) finds test cases that are
associated with a model and meet the criteria specified by one or more name-value arguments. For
example, to find test cases that include HLR in the full file path, specify IncludePath="HLR".

Input Arguments
Name-Value Arguments

• Name — Unique identifier for query, specified as character vector or string. Example:
"CustomQuery"

• IncludeLabel — Find artifacts that have a specific project label, specified as a cell array where
the first entry is the project label category and the second entry is the project label name.
Example: {"Level","HLR"}

• ExcludeLabel — Exclude artifacts that have a specific project label, specified as a cell array
where the first entry is the project label category and the second entry is the project label name.
Example: {"Level","HLR"}

• IncludePath — Find artifacts where the path contains specific text, specified as a character
vector or string. Example: "HLR"

• ExcludePath — Exclude artifacts where the path contains specific text, specified as a character
vector. Example: "HLR"

• Tags — Only include test cases that use a specific test case tag or tags. Example:
{"tag1","tag2"}

11 Built-In Query Library

11-32

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts that are associated with the artifact
iterationArtifact. If you inherit from this
built-in query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,iterationArtifact)
 ...
end

Use in Process Model
You can use this query in your process model to find artifacts that your tasks can iterate over
(IterationQuery) or use as inputs (InputQueries).

For example, suppose that you want the Run Tests task to only run on test cases that use the specific
test case tag TagA. You can use the built-in query
padv.builtin.query.FindTestCasesForModel to find the test cases and the Tags input
argument to have the query only return test cases that use the specified test case tag.

 milTask = pm.addTask(padv.builtin.task.RunTestsPerTestCase());
 milTask.IterationQuery = padv.builtin.query.FindTestCasesForModel(...
 Tags = "TagA");

If you need to include multiple instances of a task, you need to specify different Name values for each
task.

 % Run Tests for TagA
 milTaskA = addTask(pm,padv.builtin.task.RunTestsPerTestCase(...
 Name = "RunTestsForTagA"));
 milTaskA.Title = "Run Tests for TagA";
 milTaskA.IterationQuery = padv.builtin.query.FindTestCasesForModel(...
 Tags = "TagA");

 % Run Tests for TagB
 milTaskB = pm.addTask(padv.builtin.task.RunTestsPerTestCase(...
 Name = "RunTestsForTagB"));
 milTaskB.Title = "Run Tests for TagB";
 milTaskB.IterationQuery = padv.builtin.query.FindTestCasesForModel(...
 Tags = "TagB");

 padv.builtin.query.FindTestCasesForModel

11-33

padv.builtin.query.FindTopModels
This query returns each of the top models in the project. You can use optional name-value arguments
to filter the results.

Syntax
q = padv.builtin.query.FindTopModels() finds all top models in the project.

q = padv.builtin.query.FindTopModels(Name,Value) find top models that meet the criteria
specified by one or more name-value arguments. For example, to find top models that include
Control in the full file path, specify IncludePath="Control".

Input Arguments
Name-Value Arguments

• Name — Unique identifier for query, specified as character vector or string. Example:
"CustomQuery"

• IncludeLabel — Find artifacts that have a specific project label, specified as a cell array where
the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• ExcludeLabel — Exclude artifacts that have a specific project label, specified as a cell array
where the first entry is the project label category and the second entry is the project label name.
Example: {"Classification","Design"}

• IncludePath — Find artifacts where the path contains specific text, specified as a character
vector or string. Example: "Control"

• ExcludePath — Exclude artifacts where the path contains specific text, specified as a character
vector. Example: "Control"

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts. If you inherit from this built-in
query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,~)
 ...
end

11 Built-In Query Library

11-34

Use in Process Model
You can use this query in your process model to find artifacts that your tasks can iterate over
(IterationQuery) or use as inputs (InputQueries).

For example, suppose that you want the built-in task padv.builtin.task.RunModelStandards to
only run on top models in the project. By default, the Check Modeling Standards task uses the
built-in query padv.builtin.query.FindModels as the IterationQuery. In the process model,
you can change the IterationQuery for the task to:

1 Use the built-in query padv.builtin.query.FindTopModels to find the top models in the
project.

2 Specify the IncludePath argument of the query to only include top models that have Control
in the file path.

maTask = pm.addTask(padv.builtin.task.RunModelStandards());
maTask.IterationQuery = ...
 padv.builtin.query.FindTopModels(IncludePath = "Control");

For the Process Advisor example project, the model Flight_Control.slx appears under the task
title in Process Advisor.

 padv.builtin.query.FindTopModels

11-35

padv.builtin.query.GetDependentArtifacts
This query returns the dependent artifacts for a given artifact.

Syntax
q = padv.builtin.query.GetDependentArtifacts() gets the dependent artifacts for a given
artifact.

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts that are associated with the artifact
iterationArtifact. If you inherit from this
built-in query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,iterationArtifact)
 ...
end

Use in Task
You can use this query in your custom tasks to find artifacts that your tasks can use as inputs
(InputQueries).

For example, the query padv.builtin.query.GetDependentArtifacts is often used as the
InputDependencyQuery for a task. If you specify
padv.builtin.query.GetDependentArtifacts as the InputDependencyQuery for a task, the
query analyzes each input and finds any additional file dependencies.

classdef MyCustomTask < padv.Task
 methods
 function obj = MyCustomTask(options)
 arguments
 options.Name = "MyCustomTask";
 options.IterationQuery = "padv.builtin.query.FindModels";
 options.InputQueries = "padv.builtin.query.GetIterationArtifact";
 % For each input, find dependencies that can affect whether
 % task results are up-to-date
 options.InputDependencyQuery = padv.builtin.query.GetDependentArtifacts;
 end

 obj@padv.Task(options.Name,...
 IterationQuery=options.IterationQuery,...
 InputQueries=options.InputQueries,...
 InputDependencyQuery=options.InputDependencyQuery);
 end
 function taskResult = run(obj,input)
 taskResult = padv.TaskResult;

11 Built-In Query Library

11-36

 taskResult.Status = padv.TaskStatus.Pass;
 end
 end
end

When you run a task, the build system runs the InputDependencyQuery to find any additional
dependencies that can affect whether task results are up-to-date.

Note You cannot use this query as an iteration query (IterationQuery).

 padv.builtin.query.GetDependentArtifacts

11-37

padv.builtin.query.GetIterationArtifact
This query returns the artifact that the task is iterating over.

Syntax
q = padv.builtin.query.GetIterationArtifact() gets the artifact that the task is iterating
over.

Methods
run Return artifacts from query

The run method inside this built-in query returns
the iteration artifact iterationArtifact. If
you inherit from this built-in query, make sure to
use the same method signature inside your
custom query:

function artifact = run(~,iterationArtifact)
 artifact = iterationArtifact;
end

Use in Task
You can use this query in your custom tasks to find artifacts that your tasks can use as inputs
(InputQueries).

For example, the query padv.builtin.query.GetIterationArtifact is often used as one of the
input queries (InputQueries) for a task. If your IterationQuery is
padv.builtin.query.FindModels and you specify
padv.builtin.query.GetIterationArtifact as an input query for a task, the task considers
the models in the project as inputs to the task.

classdef MyCustomTask < padv.Task
 methods
 function obj = MyCustomTask(options)
 arguments
 options.Name = "MyCustomTask";
 options.IterationQuery = "padv.builtin.query.FindModels";
 options.InputQueries = "padv.builtin.query.GetIterationArtifact";
 end

 obj@padv.Task(options.Name,...
 IterationQuery=options.IterationQuery,...
 InputQueries=options.InputQueries,...
 InputDependencyQuery=options.InputDependencyQuery);
 end
 function taskResult = run(obj,input)
 taskResult = padv.TaskResult;
 taskResult.Status = padv.TaskStatus.Pass;
 end
 end
end

11 Built-In Query Library

11-38

When you run a task, the build system runs the InputQueries to find the inputs to the task.

Note You cannot use this query as an iteration query (IterationQuery).

 padv.builtin.query.GetIterationArtifact

11-39

padv.builtin.query.GetOutputsOfDependentTask
This query returns the outputs from the predecessor task.

Syntax
q = padv.builtin.query.GetOutputsOfDependentTask() gets the outputs from the
predecessor task. You must define the predecessor task by using the function dependsOn on the task
objects.

q = padv.builtin.query.GetOutputsOfDependentTask(Task=taskName) gets the outputs
from the predecessor task specified by taskName.

q = padv.builtin.query.GetOutputsOfDependentTask(Name = queryName, Task=
taskName) gets the outputs from the predecessor task specified by taskName. The query object gets
the name specified by queryName. If you do not specify a query name, the query automatically
generates a unique name based on the name of the predecessor task.

Input Arguments
Name-Value Arguments

• Name — Unique identifier for query, specified as character vector or string. Example:
"CustomQuery"

• Task — Task name, specified as a character vector or string. Example:
"padv.builtin.task.RunModelStandards"

Methods
run Return artifacts from query

The run method inside this built-in query runs on
a query object obj and returns artifacts
artifacts. If you inherit from this built-in
query, make sure to use the same method
signature inside your custom query:

function artifacts = run(obj,~)
 ...
end

Use in Task
You can use this query in your custom tasks to find artifacts that your tasks can use as inputs
(InputQueries).

For example, the query padv.builtin.query.GetOutputsOfDependentTask is often used as one
of the input queries (InputQueries) for a task. If you open the source code for the Merge Test
Results task, you can see that the task uses the built-in query
padv.builtin.query.GetOutputsOfDependentTask as an input query.

11 Built-In Query Library

11-40

open padv.builtin.task.MergeTestResults

...
options.InputQueries = [padv.builtin.query.GetIterationArtifact,...
 padv.builtin.query.GetOutputsOfDependentTask(Task="padv.builtin.task.RunTestsPerTestCase")];
options.InputDependencyQuery = padv.builtin.query.GetDependentArtifacts;
...

When you run the Merge Test Results task, the build system runs this input query, which passes the
outputs of the Run Tests task as inputs to the Merge Test Results task.

Note Note that since the Merge Test Results task depends on data from the Run Tests task, the
default process model uses the dependsOn function to explicitly specify the dependency relationship
between the tasks.

 if includeTestsPerTestCaseTask && includeMergeTestResultsTask
 mergeTestTask.dependsOn(milTask, "WhenStatus",{'Pass','Fail'});
 end

 padv.builtin.query.GetOutputsOfDependentTask

11-41

	Reference Book
	Process Modeling System API
	createprocess
	getprocess
	padv.Artifact
	padv.ProcessModel
	addQuery
	addTask
	padv.Query
	run
	padv.Subprocess
	padv.Task
	addInputQueries
	dependsOn
	run
	runsAfter
	padv.TaskResult
	applyStatus

	Build System API
	runprocess
	createProcessTaskID
	generateProcessTasks
	getProcessTaskResults
	padv.BuildResult
	padv.Preferences
	padv.ProjectSettings
	padv.UserSettings

	Pipeline Generator API
	padv.pipeline.generatePipeline
	padv.pipeline.GitHubOptions
	padv.pipeline.GitLabOptions
	padv.pipeline.JenkinsOptions

	Report Generator API
	generateReport

	Utilities
	padv.util.ArtifactAddress
	padv.util.closeModelsLoadedByTask
	padv.util.forceReanalyzeProject
	padv.util.getCurrentProject
	padv.util.getModelName
	padv.util.getProjectReferences
	padv.util.getTestCaseID
	padv.util.mergeArtifactDatabases
	padv.util.refreshProcessModel
	padv.util.saveArtifactDatabase
	padv.util.unpackExternalCodeCache

	Process Advisor Example Projects
	processAdvisorExampleStart
	processAdvisorGitHubExampleStart
	processAdvisorGitLabExampleStart
	processAdvisorJenkinsExampleStart
	processAdvisorProjectReferenceExampleStart

	Artifact Types
	Tokens
	Built-In Task Library
	Check Coding Standards or Prove Code Quality
	Prerequisites
	Add Task to Process
	Reconfigure Task
	Source Code

	Check Modeling Standards
	Add Task to Process
	Reconfigure Task
	Source Code

	Detect Design Errors
	Add Task to Process
	Reconfigure Task
	Source Code

	Generate Code
	Add Task to Process
	Reconfigure Task
	Source Code

	Generate Model Comparison
	Prerequisites
	Add Task to Process
	Reconfigure Task
	Launch Tool Action
	Source Code

	Generate SDD Report
	Prerequisites
	Add Task to Process
	Reconfigure Task
	Source Code

	Generate Simulink Web View
	Prerequisites
	Add Task to Process
	Reconfigure Task
	Source Code

	Inspect Code
	Add Task to Process
	Reconfigure Task
	Source Code

	Merge Test Results
	Prerequisites
	Add Task to Process
	Reconfigure Task
	Source Code

	Run Tests (per model)
	Add Task to Process
	Reconfigure Task
	Source Code

	Run Tests (per test case)
	Add Task to Process
	Reconfigure Task
	Source Code

	Built-In Query Library
	padv.builtin.query.FindArtifacts
	Syntax
	Input Arguments
	Methods
	Use in Process Model
	Test Outside Process Model

	padv.builtin.query.FindCodeForModel
	Syntax
	Input Arguments
	Methods
	Use in Process Model

	padv.builtin.query.FindExternalCodeCache
	Syntax
	Input Arguments
	Methods
	Use in Task Definition
	Test Query from Command Window

	padv.builtin.query.FindFilesWithLabel
	Syntax
	Input Arguments
	Methods
	Use in Process Model

	padv.builtin.query.FindFileWithAddress
	Syntax
	Input Arguments
	Methods
	Use in Process Model
	Test Outside Process Model

	padv.builtin.query.FindMAJustificationFileForModel
	Syntax
	Input Arguments
	Use in Process Model

	padv.builtin.query.FindModels
	Syntax
	Input Arguments
	Methods
	Use in Process Model
	Test Outside Process Model

	padv.builtin.query.FindModelsWithLabel
	Syntax
	Input Arguments
	Methods
	Use in Process Model

	padv.builtin.query.FindModelsWithTestCases
	Syntax
	Input Arguments
	Methods
	Use in Process Model

	padv.builtin.query.FindProjectFile
	Syntax
	Methods
	Use in Process Model

	padv.builtin.query.FindRefModels
	Syntax
	Input Arguments
	Methods
	Use in Process Model

	padv.builtin.query.FindRequirements
	Syntax
	Input Arguments
	Methods
	Use in Process Model

	padv.builtin.query.FindRequirementsForModel
	Syntax
	Input Arguments
	Methods

	padv.builtin.query.FindTestCasesForModel
	Syntax
	Input Arguments
	Methods
	Use in Process Model

	padv.builtin.query.FindTopModels
	Syntax
	Input Arguments
	Methods
	Use in Process Model

	padv.builtin.query.GetDependentArtifacts
	Syntax
	Methods
	Use in Task

	padv.builtin.query.GetIterationArtifact
	Syntax
	Methods
	Use in Task

	padv.builtin.query.GetOutputsOfDependentTask
	Syntax
	Input Arguments
	Methods
	Use in Task

