Development of Avionics Flight Test Data Analysis Tool using MATLAB

A. S. Chandane. Senior Manager (Design)

Aircraft Research & Design Centre

www.hal-india.com

Overview of MATLAB based tool developed for analysis of Avionics Systems Flight Test Data.

- Background & Context of the Problem
- Problem Statement
- Approach used to solve the problem
- Description of the tool & results achieved
- MATLAB features used
- GUI Screen-Shots
- Questions & Interactions

Background

About ARDC, HAL, Bangalore.

- One of the nine R&D Centers of Hindustan Aeronautics Limited.
- ISO 9001 2000, AS9100B certified Company
- Design, Develop, Prototype and Test Fixed Wing Aircraft from Concept to Certification.

Avionics Systems in Aircraft.

Radio Navigation Instruments -VHF Omni Range Instrument Landing System Distance Measuring Equipment GPS Receiver Radio Altimeter . . . Sensor Systems -Air Data Computer Angle of Attack Inertial Sensors Fuel Sensors . . .

Mission & Weapon Systems

Background

Flight Test Data.

Data is recorded on multiple recording devices:

- On-board FTI Recorder & FTI Ground Station (instrumented aircrafts).
- Black Box (Standard equipment on all aircraft)

Analysis is directed towards performance analysis of avionics systems/ LRUs.

Test data is analysed by the designer and presented to Flight Operations group before the next flight of the aircraft.

Background

Analyses of Flight Test Data.

Optimizing the Data Analysis process

Using MATLAB for Data Analysis

Using MATLAB for Data Analysis

- guide, uigetfile,
- disp('<a href="matlab:test_file;"Click here');
- tic, toc
- for loop, if else, switch case
- ceil,
- slsread, xlswrite
- figure, axes, plot, [AX,H1,H2] = plotyy(...)
- * xticklabel_rotate,
- slim, ylim, zlim
- datacursormode, UpdateFcn
- handles, get, set
- find, findpeaks, mean,
- annotation, imagesc,
- saveppt2

Saving Time & Effort.

From 3 hours per flight . . .

 Using MS Excel templates for plots and Turbo C routines for algorithmic calculations – taking up to 3 hours of designers time

Eliminate manual 'copy-paste-scale' actions

• Eliminate manual 'copy-paste-scale' actions of each plot to create a presentation. A single command exports all relevant plots to MS PowerPoint file.

... to 15 mins !

 Using this tool has reduced the preparation time of the analysis and presentation to approx. 15 min.

Ease of Use.

User of the tool DOES NOT require prior knowledge of MATLAB programming: User-friendly and simple GUI.

Tool automatically creates co-incident grids for multiple axes plots, links common axes, provides time labels, Titles & Legends, fonts etc.

Tool caters for dynamic scaling of limits & axes, assignment of colours, threshold limits etc.

Tool allows adding custom data cursors & comments, interactive Zoom & Pan of the plots as required.

Scalability & Adaptability.

The tool is designed to cater for multiple platforms with varied instrumentation schemes.

The program can be adapted & scaled for use on any platform

- Easy inclusion of additional data analyses.
- Addition of different sensors data.
- Intelligent filtering & algorithmic interpretation.
- Rapid generation of plots/graphs of other systems data.

It is also used to analyse Black Box data.

Data File Screen Shot

K	a 2 - 0	a - 14							1	_AVIONI	CS_ONB.xls	k - Mic	rosoft Ex	cel							
Fil	le Ho	me Inse	ert Pa	ige Lay	out Fo	ormulas	Data P	teview	View Acro	bat	_									6	s 🕜 🗆 🖻
	Cut	w +	Calibri		- 11	• A* A*	= =	_ »	🛱 Wraj	o Text	General						-	P 🗊	Σ Auto:	Sum - A	
Past	te J For	mat Painter	BI	<u>u</u> -	图 *	3 · A ·	= =	温 谑	🗱 🔛 Merg	je & Center +	- %		00. 0. 0. 00.	Conditio	onal Format	Cell	Insert	Delete Format	t Q Clear	- Sor	& Find &
	Clipboard	d (a)			Font	-12		Alk	anment	12	Nu	mber	G.	Formatts	styles	stytes		Cells	~	Editing	ar - Selett -
	Δ1		. (n	6	TIME																
1		n	- C		0	F	E .	G	н		1	V.			84	N	0	D	0	D	r.
1	TIME	ACRA DA	ACRA	HO AC	BA MIN		CRA SEC	AV ALTR	AAV APPSU	V BARO A		V BNO	ON AV	CAS AV	CAS SAV	CEU		AV DMED A	V DMED A	V DMEE	AV DMEGA
2	05:46.4	98		9	35	864	46	-0.0254	0	0	1	_	1	55.5	3	0	1.045677	0.63	3	115.5	0
3	05:46.6	98		9	35	864	47	-0.0254	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
4	05:46.9	98		9	35	864	47	-0.01524	. 0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
5	05:47.1	98		9	35	864	47	-0.00635	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
6	05:47.4	98		9	35	864	47	-0.00508	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
7	05:47.6	98		9	35	864	48	C	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
8	05:47.9	98		9	35	864	48	0.00127	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
9	05:48.1	98		9	35	864	48	-0.00762	0	0	1		1	55.5	3	0	1.045677	0.62	3	115.5	0
10	05:48.4	98		9	35	864	48	C	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
11	05:48.6	98		9	35	864	49	-0.00127	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
12	05:48.9	98		9	35	864	49	0.00381	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
13	05:49.1	98		-						-					-	-			3	115.5	0
14	05:49.4	98								R A (f !	_			3	115,5	0
15	05:49.6	98					4 I U I		ne	IVI S	5 F	- X	(C (e l	THE	24	_		3	115.5	0
16	05:49.9	98						••••									-		3	115.5	0
17	05:50.1	98																	3	115.5	0
18	05:50.4	98		2				OV	VC)	Y 1	' R N				Imr	٦C		act	3	115.5	0
19	05:50.6	98		4					VJ.		50							au	3	115.5	0
20	05:50.9	98			201	2.25				1.2.3				123724				2 7 2 3 2 H	3	115.5	0
21	05:51.1	98		9	35	864	51	0.01905	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
22	05:51.4	98		9	35	864	51	0.02032	2 0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
23	05:51.6	98		9	35	864	52	-0.00508	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
24	05:51.9	98		9	35	864	52	0.00889	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
25	05:52.1	98		9	35	864	52	0.02286	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
20	05:52.4	50		9	33	804	52	0.02280	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
27	05:52.0	98		9	30	804	33	0.02155	0	0	1		1	33.3 66.6	3	0	1.045077	0.03	3	115.5	0
20	05:52.9	98		0	25	004	53	0.01324	0	0	1		1	55.5	3	0	1.045677	0.64	3	115.5	0
20	05:52.4	98		5	33	864	53	0.01010		0	1		1	55.5	3	0	1.045677	0.64	3	115.5	0
21	05-52.6	00		0	25	964	54	0.00525		0	1		1	55.5	2	0	1.045677	0.64	2	115.5	0
32	05-53.9	98		9	35	864	54	0.00353	0	0	1		1	55.5	3	0	1.045677	0.64	3	115.5	0
22	05:54.1	98		9	35	864	54	-0.01397	0	0	1		1	55.5	3	0	1.045677	0.64	3	115.5	0
34	05:54.4	98		9	35	864	54	-0.0122	0	0	1		1	55.5	3	0	1.045677	0.64	3	115.5	0
85	05:54.6	98		9	35	864	55	-0.01524	0	0	1		1	55.5	3	0	1.045677	0.64	3	115.5	0
36	05:54.9	90		9	35	864	55	-0.01524		0	1		1	55.5	3	0	1.045677	0.64	3	115.5	0
37	05:55 1	98		9	35	864	55	-0.01779	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
38	05:55 4	98		9	35	864	55	-0.02159	0	0	1		1	55.5	3	0	1.045677	0.63	3	115.5	0
29	05-55.6	98		9	35	864	56	-0.02286	. 0	0	1		1	55.5	3	0	1 045677	0.63	3	115.5	0
1000	h hi DT	2 AVIONIC	S ONR	191	1								1	4	11						1

Screen Shots

Screen Shots

	Select file for	FTI data analysis	×
🔄 🏵 🔻 🕇 🕌 «	flt_analysis 🕨	v ♂ Searc	h h
Organize 🔻 New fo	lder		i 🕶 🖬 🔞
🔆 Favorites	^ Name	Date mod	ified Type
E Desktop	30-4-201	6 10h 49m 22s S 02-05-201	6 11:22 Microsoft Excel W
🗼 Downloads	10 CT LOT C TLT CO 30-4-201	6 10h 49m 22s 02-05-201	6 11:19 MATLAB Data
🗐 Recent places	AVIONICS_	ONB 29-04-201	6 14:23 Microsoft Excel W
	C	29-04-201	6 14:24 Microsoft Excel W
🥽 Libraries	SIPU_SDU_	A_ONB 29-04-201	6 14:24 Microsoft Excel W
Documents	SIPU_SDU_	B_ONB 29-04-201	6 14:25 Microsoft Excel W
J Music			
Pictures			
Videos 🗧			
🖳 Computer			
🛍 Network	v <		>
File	e name:ONB	V MS I	xcel or MAT Files (*.xls,*.xl: 👻
			Onen
			Cancer

HAL

Screen Shots

THANK YOU !