
1

2© 2017 The MathWorks, Inc.

Polyspace를 활용한 MISRA C:2012 및 실행시간 오류 검사

Introduction to Polyspace with MISRA C:2012 and RTE

유용출과장

Gary.Ryu@mathworks.co.kr

mailto:Gary.Ryu@mathworks.co.kr

3

Agenda

 Why do we check MISRA C and Runtime errors?

 Polyspace Introduction

– How to check MISRA C:2012 violations

– How to verify Runtime errors

4

Why do we check MISRA C or Runtime error ?

The intention was to provide a "restricted subset of a standardized structured language"

as required in the 1994 MISRA Guidelines for automotive systems being developed to meet

the requirements of functional safety standards like ISO 26262.

Ref) ISO 26262 – Mapping Table (Certification Kit 2017a)

Topics
ASIL

A B C D

1a Enforcement of low complexity ++ ++ ++ ++

1b Use of language subsets ++ ++ ++ ++

1c Enforcement of strong typing ++ ++ ++ ++

1d Use of defensive implementation techniques o + ++ ++

1e Use of established design principles + + + ++

1f Use of unambiguous graphical representation + ++ ++ ++

1g Use of style guides + ++ ++ ++

1h Use of naming conventions ++ ++ ++ ++

Table 1 – Topics To Be Covered By Modeling and Coding Guidelines

Topics
ASIL

A B C D

1a Walkthrough ++ + o o

1b Inspection + ++ ++ ++

1c Semiformal verification + + ++ ++

1d Formal verification o o + +

1e Control flow analysis + + ++ ++

1f Data flow analysis + + ++ ++

1g Static code analysis + ++ ++ ++

1h Semantic code analysis + + + +

Table 9 – Methods for Verification of Software Unit Design and Implementation

5

Why restricted subset?

 There are several drawbacks with the C language

– ISO Standard language definition is incomplete …

 Undefined behavior

 Unspecified behavior

 Implementation-defined behavior

– Misuse language

– Misunderstanding language

– Lack of Runtime error checking

 One of solution is MISRA C and RTE detection with Static Analysis

6

Why restricted subset?

 There are several drawbacks with the C language

– ISO Standard language definition is incomplete …

 Undefined behavior

 Unspecified behavior

 Implementation-defined behavior

– Misuse language

– Misunderstanding language

– Lack of Runtime error checking

 One of solution is MISRA C and RTE detection with Static Analysis

int foo (int arg) {

return arg + 1;

}

void main (void) {

int var = 0;

printf (“var : %d and %d\n”, var++, foo(var));

}

Output with …

- gcc 5.4.0

- Visual Studio 2013

: var : 0 and 1

: var : 0 and 2

7

Why restricted subset?

 There are several drawbacks with the C language

– ISO Standard language definition is incomplete …

 Undefined behavior

 Unspecified behavior

 Implementation-defined behavior

– Misuse language

– Misunderstanding language

– Lack of Runtime error checking

 One of solution is MISRA C and RTE detection with Static Analysis

8

Brief History of MISRA C

 MISRA C:2012

– Compatible with ISO/IEC 9899:1999 (C99)

– published in 2013

– 159 Guidelines

 16 Directives

 143 Rules

 MISRA C:2004

– Compatible with ISO/IEC 9899:1990 (C90)

 MISRA C:1998

– Compatible with ISO/IEC 9899:1990 (C90)

– 173 Guidelines

 17 Directives

 156 Rules

More guidelines
for Security

(April, 2016)

9

What is MISRA C:2012

 Directives

 Rules

Guidelines for which it is not possible to provide the full description necessary to perform a

check for compliance. Static analysis tools may be able to assist in checking compliance.

For example, items are checked with design documents or requirements specification.

Guidelines for which a complete description has been provided. It is possible to check

compliance with source code without any other information.

10

What is MISRA C:2012

 Directives
– 17 Directives

 10 Required directives

 7 Advisory directives

 Rules
– 156 Rules

 16 Mandatory rules

 108 Required rules

 32 Advisory rules

Mandatory:
- Deviation from this guidelines is not permitted.

Required:
- Formal deviation is required.

Advisory:
- Formal deviation is not necessary, but alternative

arrangements should be made.

* Any guideline can be treated as required/mandatory guideline.

11

New Security guidelines of MISRA C:2012

 are to improve the coverage of the security concerns highlighted by ISO/

IEC 17961:2013

Safety
Coding

Standard

Security
Coding

Standard

 MISRA C has evolved…

from automotive standard to industry-wide standard!

12

Polyspace PRODUCTS

Compiler Warnings

Bug Findings Formal Methods

Coding Rules, Code Metrics

(No False negative)(False negative)

Error Prevention

Error Detection

Polyspace Bug Finder
Polyspace Code Prover

Polyspace Bug Finder Polyspace Code Prover

13

Not all bugs can be statically proven

All Bugs

Statically Detectable

Provable

e.g., divide by zero,

overflow, illegal

pointer dereferences

e.g., if(x=y) vs.

if(x==y), memory

leaks, partial

array access

Polyspace Bug Finder

Polyspace Code Prover

14

Polyspace supports for Coding Rules Compliance

 MISRA C:2012
– 11 Directives supported

– 156 rules supported

– 6 directives not enforceable

 MISRA C++:2008

– 185 of the 228 rules supported

 JSF++:2005

– 157 of 234 rules supported

15

Polyspace supports for various Code Metrics

 Project Metrics

– Direct Recursions

– Header Files

– Files

– Recursions

 File Metrics

– Comment Density

– Estimated Function Coupling

– Lines

– Lines without comment

 Function Metrics

– Cyclomatic Complexity

– Higher Estimate of Local Variable Size

– Lower Estimate of Local Variable Size

– Language Scope

– Call Levels

– Call Occurrences

– Called Functions

– Calling Functions

– Executable Lines

– Function Parameters

– Goto Statements

– Instructions

– Lines Within Body

– Local Non-Static Variables

– Local Static Variables

– Paths

– Return Statements

16

Numerical

 Division by zero, Overflow

 Invalid use of standard library

integer/floating point routine

 …

Static memory

 Array access out of bounds

 Null pointer

 …

Dynamic memory

 Memory leaks

 Use of previously freed pointer

 …

Dataflow

 Write without further read

 Non-initialized variable

 …

Concurrency

 Data races (atomic, non-atomic)

 Deadlocks

 …

Resource management

 Resource leak

 Writing to read-only resource

 …

Programming

 Invalid use of = or == operator

 Declaration mismatch

 …

Good Practice

 Unused parameter

 Large pass-by-value argument

 …

Security

 Unsafe standard function

 Use of non-secure temporary file

 …

Tainted data

 Array access with tainted index

 Tainted sign change conversion

 …

Types of Defects detected by Polyspace Bug Finder

www.mathworks.com/help/bugfinder/defect-reference.html

http://www.mathworks.com/help/bugfinder/defect-reference.html

17

Full list of Runtime checks in Polyspace Code Prover

C run-time checks

 Unreachable Code

 Function not called

 Function not reachable

 Non-initialized local variable

 Non-initialized pointer

 Non-initialized variable

 Return value not initialized

 Division by zero

 Invalid operation on floats

 Invalid shift operations

 Overflow

 Subnormal float

 Absolute address usage

 Illegally dereferenced pointer

 Out of bound array index

 Non-terminating call

 Non-terminating loop

 Correctness condition (array conversion must not extend range,

function pointer does not point to a valid function)

 Invalid use of standard library routine

 User assertion

Additional run-time checks for C++ only

 Incorrect object oriented programming

 Invalid C++ specific operations

 Function not returning value

 Null this-pointer calling method

 Uncaught exception

www.mathworks.com/help/codeprover/run-time-check-reference.html

http://www.mathworks.com/help/codeprover/run-time-check-reference.html

18

Grey – Unreachable / Dead

Green - Reliable

Orange - Vulnerability

Red - Faulty

Nothing Found

Probable Bug

Purple - coding rule violations

Bug Finder Code Prover S.

How do Bug Finder results differ from Code Prover results?

19

Polyspace demonstration

