ISO 26262 Workflow with Qualified Code Generation

Simulink Requirements

Requirements Authoring

A 4

AUTOSAR Authoring Tool

ARXML Interface files

Simulation, Processor and Hardware in the Loop Test Cases Traceability

(=== === ————————

Model Quality Metrics

-
sldamo:{’ue.!"sy‘s 192 1 e Bumamasioc “_.I'T]_o.
42.:;’}\ lse,n%\\\ -
e Simulink Coverage
I 1§ i =
—wwca I o
0 . r .
NN — Coverage Metrics
L gt ™ ™

Simulink Design Verifier

Design constraints
(Equivalence classes, Boundary
Values, Derived Requirements)

4 Automatic Test
Case Generation

Simulation Test
Cases Traceability

Modelling Standards

=== ===

Simulink Requirements

Test Cases Traceability

o \Te 202

¥ Dapiyy Bode | S oaew usthciben Progie<s 1%

[Dok

Embedded Software (integration)

Polyspace®

Compate fiews Findnge Onsy c
P cabs
Tqoe ey Comng Rues RnTime Crarey

Fur-Tie Gebactity (%

w i : i Ltgent
1

3 . - - —//— -

2 2 o e ' o isden iy

5 3 o Lo Law ® i

e a o PSS N ™ i

TTF¥I458 132 3 TIT TR A FEE RN k28

Coge Mata Eadrg Rukn Fo. T Eirpra
t B

[T
[— ——-
Pitsigeie Dode Priver m i.—a.ﬁ

le Edit Aun Review Options Window Help
IEONE S | L DR - ER A D seadth
b A checks

» L[Case senstwe”| Whle word = | (5 Project Manager | Resuls Manager|

v gm0 Ot of Bounds amay ndex

==

SIL and PIL Test Cases Traceability

___>

Code Quality Metrics

[

Unqualified Tools

—

Qualified Tools

Configuration Inputs

—]

Verification Objectives Settings

y

ISO 26262-6.7: Table 4 — Mechanisms for error detection at the software architectural level
ISO 26262-6.7: Table 6 — Methods for the verification of the software architectural design (Formal Verification)
ISO 26262-6.9: Table 9 — Methods for Verification of Software Unit Design and Implementation (Formal Verification)

Software in the Loop (SIL) Testing

Testing Environment Settings

y

Coding Standards ——

Simulation Cases Results

v

(Optional)

Model Coverage Analysis

Design Error Detection and Property Proving

ISO 26262-6.9: Table 12 — Structural coverage metrics at the Software Unit Level
ISO 26262-6.10: Table 15 — Structural coverage metrics at the software architectural level

Note: Formal Methods allow to detect errors in the Model including dead logic, integer
overflow, division by zero, and violations of design properties and assertions, out-of-
bounds array access and certain other run-time errors in source code

ISO 26262-6.9: Table 10 — Methods for software unit testing
ISO 26262-6.10: Table 13 — Methods for software integration testing

Model in the Loop (MIL) Functional Testing

ISO 26262-6.9: Table 11 — Methods for deriving test cases for software unit testing
ISO 26262-6.10: Table 14 — Methods for deriving test cases for software integration testing

ISO 26262-6.7: Table 4 — Mechanisms for error detection at the software architectural level
ISO 26262-6.7: Table 6 — Methods for the verification of the software architectural design (Formal Verification)
ISO 26262-6.9: Table 9 — Methods for Verification of Software Unit Design and Implementation (Formal Verification)

v

Model Standard Checks

v

ISO 26262-6.5: Table 1 — Topics to be Covered by Modeling and Coding Guidelines
ISO 26262-6.7: Table 3 — Principles for software architectural design
ISO 26262-6.8: Table 8 — Design principles for software unit design and implementation

ISO 26262-6.8: Table 9 — Methods for Verification of Software Unit Design and Implementation
__ ’

ISO 26262-6.5: Table 1 — Topics to be Covered by Modeling and Coding Guidelines

ISO 26262-6.7: Table 3 — Principles for software architectural design

ISO 26262-6.8: Table 8 — Design principles for software unit design and implementation

ISO 26262-6.8: Table 9 — Methods for \erification of Software Unit Design and Implementation

Polyspace Bug Finder

Polyspace Code Prover

Coder Settings Embedded Coder

Code Standards Checks (MISRA,...)

Prove Absence of Run-Time Errors

uonejuswajdwi pue ubisap 1un asemyos 4oy sajdiounid ubisaq — g 9.l :8'9-29292 OSI

(BurdA101014) ubiISa@ Yoy 2Jemiyos JO UOITRIILLIBA J0) SPOYIBIN — 9 3|qel :/'9-2929Z OSI

Testing Environment Settings

ISO 26262-6.9: Table 10 — Methods for software unit testing
ISO 26262-6.10: Table 13 — Methods for software integration testing

9.4.6 The test environment for software unit testing shall correspond as closely as possible to the target
environment. If the software unit testing is not carried out in the target environment, the differences in the
source and object code, and the differences between the test environment and the target environment, shall
be analysed in order to specify additional tests in the target environment during the subsequent test phases.

NOTE 1 Differences between the test environment and the target environment can arise in the source code or object
code, for example, due to different bit widths of data words and address words of the processors.

NOTE2 Depending on the scope of the tests, the appropriate test environment for the execution of the software unit is
used (e.g. the target processor, a processor emulator or a development system).

NOTE 3 Software unit testing can be executed in different environments, for example:

model-in-the-loop tests;

(Optional)

v

Supported coverage types:
Decision coverage
Condition coverage
MC/DC

SIL Test Cases Results .

Simulink Coverage

Lookup table coverage
Signal range coverage

Code Coverage

ISO 26262-6.9: Table 12 — Structural coverage metrics at the Software Unit Level
ISO 26262-6.10: Table 15 — Structural coverage metrics at the software architectural level

Methods

ASIL
A B c D

1a

Statement coverage

++

++

+

1b | Branch coverage + ++ ++ ++
ic |MC/DC (Modified Condition/Decision Coverage) + + * ++
Methods AL
A B Cc D
1a |Function coverage® + + o+
1b |Call coverage® + + + | 4+

Processor and Hardware in the Loop (PIL and HIL) Testing

\ 4

software-in-the-loop tests;
processor-in-the-loop tests; and
hardware-in-the-loop tests.

NOTE4 For model-based development, software unit testing can be carried out at the model level followed by back-to-

back comparison tests between the model and the object code. The back-to-back comparison tests are used to ensure
that the behaviour of the models with regard to the test objectives is equivalent to the automatically-generated code.

Effort Distribution in Traditional Development Workflows

Specifications

Implementation
(C, C++, HDL, ...)

Design & Regs
Validation

Software
Verification

4

. MathWorks:

ISO 26262-6.11: Table 16— Test environments for conducting the software safety requirements verification

SYSTEM

ubISa@ UM 2JeM)0S J10J SUOITRION — / 3

ubISaq [e4n198)1YdIY 3J8MJOS JO UOITEDILIISA 10 SPOYIBIN — 9 @

[9AST [eN128)IY2IY 81eM0S 3y} Je BuljpueH 10113 10} SWSIUBYISIN — G 8

[9A9] [2AN1931IYDIR 91eM0S BY) 18 UO0I1D818p 10413 10) SWSIURYISN — {7 @

ubisap [eJn1oallydJe a1emyos Joy sejdioulld — € 9

SPECIFICATION

ubiIsap [ein}08]IYdIe 3IBMIJOS J0) SUOIBION — Z 9

** 19$)20|g uleilIdMO(d ‘49u8ISa JUI0d-PaXI4{ ‘MO[§1L1S HUIjnWIS ‘GYT1LIVIN - udisaq

SOFTWARE

MODEL

’

&
«

(uonzesauasd a1} TNXYY HVSOLNY pue)

uollelauap 9p0) dljewolny

IEC Certification Kit

1. Vocabulary

2. Management of functional salety

F-ﬁ Cwerall safely managament

4 S afety mansgsment during e concepl phae
rid e procuct deslo prment

2-7 Eafery managermen | e e Bam's relanss
fior p maducion

A Concept phasa

3-8 Rorn definifion

(346 Initiaton of e safed v |ifecyche

-F Farard analyis and risk
8 T v

3-8 Funcional salety
el

A, Product devel opment at the asyatam leval Produclicn and eparation

[2-11 Raleama for producsg Proucion

b e alicn, S8R
irm&Erfenancs and mp], ad
s i AE N ra

et at e

I'l' i i L' \

chibaciral dasion

|

56
archibpduml marcs

N CiFl 1 B L
Wolations dus ko mndom

LI
510 Hard ware Infog ation
besiing

1 it Realing

i dher gn and
L &

.-:I._'-"

ISO 26262 is rooted
in modeling and

LSofwrane imegmlion and
ir

11 Verid icalion af sofvears aafety
mljrn'nn'ﬂ /

8. Supp orting processes

5 Irhertacecs \WIEhin clis riloe e cl cheopl opm ents

£

i o ared mars
=7 o o i B) PV g i

B0 Documensaon

il of e Ll T e

3-11 Corfica nca in e use of sovwere kol

& Chancea n anag ermen |

E1I il B Caan 0 S0 Sven 8O0 FENIENES. p,
A3 Cualfication of harcheam compon ents

|B-8 Werification [B-14 Proven in use argurment

ECU_system

1

'.@ 2

3 3

= Test Sequence

> 1

" 2

f 1

D Processor > Test Assessmant

» Inverter and Motor
e —— | [[|
Embedded Processor Enter perspective | er p-ed]ue| ECU_system

(& C -

» Code | Interface
Ready 99% odeds

simulation
I1SO 26262-6:2011(E)
Annex B
(informative)
[Model-based development]

B.1 Objectives

This annex describas the concept of model-based development of in-vehicle software and oullines its
implications on the product development at the software level.

B.2 General

Mathematical modelling, which has been extensively used in many engineering domains, is also gaining
widespread use in the development of embedded software. In the automaotive sector, modelling s used for the
conceptual capture of the functionality to be realized (openiclosed loop contred, monitoring) as well as for the
simulation of real physical system behaviours (vehicle environment).

Madeding is usually carried out with commercial off-the-shelf modelling and simulation software fools. They
support the development and definition of system/software elements, and their connections and interfaces by
semi-formal graphical models. These models employ editable, hierarchical block diagrams (e.g. control
diagrams) and extended state transiion diagrams (e.g. state charts). The software tools provide the

y means of description, eor ion techniques and interpretersicompilers. Graphical editors permit
an intuitive development and description of complex models. Hierarchically structured modularity is used in
order to contral complexity. A model consists of funclion blocks with well-defined inputs and outputs. Function
blocks are connected within the block diagram by directed edges between their interfaces, which describe
signal flows. With this, they represent equations in the mathematical model, which relate the interface
variables of different elements. The connection lines represent causally motivated directions of action, which
define the outputs of ane block as the inputs of anather. Other took-specific modeling semantics also can be
used o impose order of execution and timing. The hierarchy of elements can contain several levels of
refinement.

Such models can be simulated, i.e. executed. During simulation the calculation causality follows the defined
directions of action urtil the entire model has been processed. There is a range of different solvers available
for solving the equations described by the model. Variable-step solvers are used primarily for modelling the
vehicle and the envircament. For the development of embadded software, fived-step solvers are used, which
represent a necessary prerequisite for efficient code generation.

The modelling style described is used extensively within the scope of model-based development of embedded

in-vehicle software. Typically, bath an executable model of the control software (e.g. a functional model) and a
madel of the surrounding system (e.g. a vehicle model) and its environment (e.g. an environment madel) are

-

o

Typically, both an executable model of the control software (e.g. a functional model) and a model of the
surrounding system (e.g. a vehicle model) and its environment (e.g. an environment model) are created
early in the development cycle and are simulated together. ... While the vehicle/environment model is
gradually replaced by the real system and its real environment, the functional model can serve as a
blueprint for the implementation of embedded software on the control unit through code generation.

Detect Unintended Function
(Source Code traceability)

ISO 26262-6.8: Table 9 — Methods for Verification of

SOURCE
CODE

v

Optimizing

Compiler

\ 4

EXECUTABLE

OBJECT

CODE

Software Unit Design and Implementation

ISO 26262-8.3: Confidence in Use of the Software Tools

¢ CEPTUOUKAT & CERTIFICADO CERTIFICAT

- 4
=

i

i

IEC Certification Kit

Product Service

CERTIFICATE

No. 210151167052 017

Holder of Certificate: The MathWorks, Inc.

3 Apple Hill Drive
Mafick MA 01760-2098
USA

Factory(ies):

67052

Certification Mark:

Product: Software Tool for Safety Related Development
Model(s): Embedded Coder™

Real-Time Workshop® Embedded Coder™
Parameters:

The code generator is suitable for use to develop safety-
related software according to |IEC 61508 and EN 50128.
The code generator is a qualified tool according to

IS0 26262

It is suitably validated for use in safety-related
development according to |IEC 62304{ed.1)

2.4 Tool Use Cases

.

Specifications

Effort Distribution in Model-Based Design Workflows

.

Design & Reqs
Validation

Customer quotes claim
a total effort reduction

— .

Implementation
(C, C++, HDL, ...)

of 30-50%

I

Software
Verification

It is assumed that Embedded Coder will be used as described by one or more of the following use cazss [see
150 26262-8, 11.4.4.1c)

[ECoder_UC1] Generating C Code for the Model Used for Production Code Generation

[ECoder_UCZ2] Generating C Code and Files for AUTOSAR Application Software
Componentz for the Model Used for Production Code Generation

[ECoder_UC3] Generating C++ Code for the Model Used for Production Code Generation

Thai

t lamguagss to the code

Stateflow. The Cor

KOSTAL Asia R&D Center Receives ISO 26262 ASIL D
Certification for Automotive Software Developed with

Model-Based Design

Kostal's electronic steering column lock module.

	Slide Number 1

